Классом Леви L(M) называется класс всех групп G, в которых нормальное замыкание (a)G каждого элемента a из G принадлежит классу групп M. Пусть p - простое число, s - натуральное число, p≠2; s≥2, и s>2 приp=3. В работе описан класс Леви L (q(Hps, Z)), где Hps - свободная ранга два группа в многообразии нильпотентных ступени не выше двух и экспоненты ps групп, Z - бесконечная циклическая группа, q(Hps, Z)- квазимногообразие, порождённое группами Hps, Z.
Пусть - натуральное число,
Пусть р - простое число, р\neq 2, s - натуральное число, s>=2, и Nps - класс всех 2-ступенно нильпотентных групп с коммутантом экспоненты р и содержащейся в центре группы периодической частью экспоненты рs-1, в которых из произвольного нетривиального коммутатора не извлекается корень степени р. В работе доказано, что класс Леви, порождённый произвольным содержащим циклическую группу порядка ps-1 неабелевым подквазимногообразием квазимногообразия Nps, совпадает с классом Леви, порождённым квазимногообразием Nps.
В работе изучаются классы Леви квазимногообразий, “близких” к квазимногообразию QH^(V^2)среди которых удалось обнаружить континуум различных квазимногообразий, класс Леви каждого из которых совпадает с L(QH^(V^2))