В работе приведены результаты численного исследования математической модели биотеплопереноса в живых тканях, рассмотрено влияние компонент перфузии и тепловой диффузии.
В работе рассматривается кинетическая модель, описывающая развитие аутоиммунных заболеваний. Предлагаемая модель представляет собой систему дифференциальных уравнений, которая учитывает биологическую активность взаимодействующих популяций, а также основные характеристики аутоиммунных заболеваний. Проведено численное и аналитическое исследование задачи.
Статья посвящена численному исследованию математической модели фильтрации сжимаемой жидкости в пороупругой среде с неоднородными граничными условиями. Исходная задача сводится к двум уравнениям для нахождения функций пористости и плотности жидкости. Для нахождения плотности предлагается симметричная разностная схема второго порядка аппроксимации по времени и пространству, а для отыскания пористости метод Рунге-Кутты четвертого порядка точности.
В работе рассматриваетсяматематическая модель фильтрации жидкости в пороупругой среде. В первом случае исследуется изотермическая фильтрация без учёта фазовых переходов, во втором - неизотермическая фильтрация с учётом обмена масс между фазами. Проведено численное исследование двух задач в автомодельных переменных с помощью метода Рунге-Кутты четвертого порядка точности.
Статья посвящена численному исследованию автомодельной задачи фильтрации вязкой жидкости в вязкоупругом пористом скелете.
В статье рассматривается двумерное движение углекислого газа в пороупругой среде. Приводится алгоритм численного исследования полученной начально-краевой задачи.
В работе рассматривается математическая модель фильтрации жидкости в деформируемой пористой среде. Особенностью рассматриваемой модели является учет температуры и подвижности пористого скелета.
С использованием уравнений неизотермической двухфазной фильтрации рассматривается задача о движении воды в тающем снеге. Ледовый покров рассматривается как двухфазная среда, состоящая из воды и льда. В данной постановке учитываются фазовые переходы и движение твердой фазы. В модельном случае в автомодельных преременных задача сводится к системе уравнений для нахождения пористости, температуры, скоростей фаз и давления жидкой фазы. Предложен алгоритм численного решения для автомодельной задачи.