SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Излагается применение метода разложения по собственным функциям самосопряжённого дифференциального оператора к решению одной нестационарной задачи теплообмена с фазовым переходом на примере процесса затвердевания некоторой сплошной среды. Одномерная задача решается в сферических координатах. Решение задачи начинается с её преобразования к области с фиксированными границами, затем для решения преобразованной задачи строится конечное интегральное преобразование с неизвестным ядром, нахождение которого связано с постановкой и решением соответствующей спектральной задачи через вырожденные гипергеометрические функции. Находятся собственные значения и собственные функции, а также формула обращения для введённого интегрального преобразования, что позволяет выписать аналитическое решение задачи. В ходе решения задачи устанавливается параболический закон движения границы раздела двух фаз. Задачи подобного типа возникают при математическом моделировании процессов теплообмена в строительстве, особенно в районах вечной мерзлоты, в нефтегазодобыче при бурении и эксплуатации скважин, в металлургии и т. д.
Найдены симметрии системы уравнений двухфазной среды, где первая фаза - газ, вторая - твёрдые частицы. Вторая фаза считается разрежённой, что выражается в отсутствии давления в уравнениях движения второй фазы. Среда предполагается неизотермической. С помощью методов группового анализа найдены алгебры Ли симметрий изучаемой модели в одномерном и трёхмерном случаях. В работе подробно описан процесс поиска симметрий в случае уравнений состояния совершенного газа. Найдены некоторые частично инвариантные решения одномерной системы уравнений.
Рассматривается гамильтониан Ландау HB + V, действующий в L2(R2) и возмущённый периодическим электрическим потенциалом V. Предполагается, что магнитный поток η = (2π)-1Bv(K) однородного магнитного поля B > 0 является рациональным числом, где v(K) - площадь элементарной ячейки K решётки периодов Λ потенциалаΛΛlocV. Определяются семейства банаховых пространств Ln (R2; R), которые (как линейные пространства) являются линейными подпространствами пространств Соболева Hn(R2; R), n ∈ N∪{0}, периодических с решёткой периодов Λ функций из Hn (R2; R)Λи которые содержат плотные Gδ-множества O ⊆ Ln (R2; R), такие, что для любого ΛΛэлектрического потенциала V ∈ O и любого однородного магнитного поля с потоком 0 < η ∈ Q спектр оператора HB + V абсолютно непрерывен. В частности, в качестве пространств Ln (R2; R) можно выбирать пространства Hs (R2; R), s ∈ [n, n+1). Такжепри заданных решётке периодов Λ ⊂ R2 и однородном магнитном поле B > 0 приве-Λ дены условия на коэффициенты Фурье периодического электрического потенциала V ∈ Hn(R2; R), n ∈ N ∪ {0}, при выполнении которых и при η ∈ Q спектр оператора HB + V абсолютно непрерывен.
В статье рассматривается класс точных решений для описания медленных течений Стокса бинарных жидкостей. Семейство точных решений построено на основе анзаца Линя – Сидорова – Аристова для поля скорости. Поле скорости обладает широким функциональным произволом. Оно зависит линейно от двух координат (горизонтальных или продольных). Коэффициенты линейных форм являются функциями двух переменных от третьей (вертикальной или поперечной) координаты и времени. Поле давления, поле температуры и поле концентрации растворенного вещества являются квадратичными формами. Иными словами, учитываются не только горизонтальные градиенты, но и кривизна гидродинамических полей. Построенное точное решение описывает термодиффузию с обоими перекрестными диссипативными эффектами Соре и Дюфура. Выведена система уравнений для описания неустановившихся потоков, состоящая из уравнений типа теплопроводности и градиентных уравнений. Приведены формулы гидродинамических полей для описания установившегося медленного течения Стокса бинарной жидкости.
В работе на основе анализа результатов теоретических и экспериментальных исследований сформулированы критерии, которым должны удовлетворять металлы для наблюдения в них туннелирования водорода, и методики измерения коэффициентов квантовой диффузии. Во-первых, должно быть достаточно малым (на уровне 0,15 нм) расстояние между ближайшими равновесными позициями атомов водорода в кристаллической решетке металла. Во-вторых, должна быть достаточно низкой температура Дебая металла, ниже 350 К. В-третьих, необходимым условием наблюдения туннелирования водорода является корректный выбор методики измерения коэффициентов диффузии водорода. Если в районе температуры Дебая коэффициент диффузии водорода по классическому механизму миграции находится на уровне 10−11 м2/с и выше, то целесообразно применять непрямые методики, основанные на эффекте Горского или измерении скорости спин-решеточной релаксации с помощью ядерного магнитного резонанса. При более низких значениях коэффициента классической диффузии в районе температуры Де-бая металла для наблюдения квантовой диффузии необходимо применять прямую методику ядерных реакций в режиме онлайн или ее же в сочетании с методом ядерных реакций.
В статье представлено семейство точных решений системы уравнений Навье – Стокса, используемой для описания неоднородных однонаправленных течений вязкой жидкости с учетом моментных напряжений. Несмотря на наличие только одной ненулевой компоненты вектора скорости, эта самая компонента зависит от времени и двух пространственных координат. Зависимость от третьей пространственной координаты отсутствует ввиду уравнения несжимаемости, являющегося частным случаем закона сохранения массы. Получающаяся переопределенная система уравнений рассматривается в нестационарной постановке. По-строение семейства точных решений полученной переопределенной системы начинается с анализа однородного решения типа Куэтта как наиболее простого в этом классе. Далее структура решения постепенно усложняется: профиль единственной ненулевой компоненты вектора скорости представлен в виде полинома, зависящего от одной переменной (горизонтальной координаты). Коэффициенты полинома функционально зависят от второй (верти-кальной) координаты и времени. Показано, что, ввиду сильной нелинейности и неоднородности исследуемого уравнения, сумма отдельных его решений не является решением. Также показано, что в линейно независимом базисе степенных функций горизонтальной координаты, определяющих вышеупомянутый полином, рассматриваемое уравнение распадается на цепочку простейших однородных и неоднородных уравнений в частных производных пара-болического типа. Данные уравнения интегрируются последовательно, порядок интегрирования отдельно описан. Результаты, изложенные в данной статье, обобщают ранее представ-ленное авторами семейство точных решений для описания однонаправленных нестационарных течений.
При изучении конвективных крупномасштабных течений (движение жидкости в тон-ком слое) можно для первоначальных исследований рассматривать приближение Стокса при интегрировании уравнения Обербека – Буссинеска. В этом случае конвективную производную в уравнениях переноса импульса и в уравнении теплопроводности полагают тождественно равной нулю. В статье рассмотрено несколько подходов к построению точных решений для медленных (ползущих) течений неоднородно нагретой жидкости. Для установившихся течений приведены формулы для трехмерных течений в классе Линя – Сидорова – Аристова. Гидродинамические поля описываются полиномами. Приведены точные решения для поля скоростей, нелинейно зависящего от двух пространственных координат (продольных, или горизонтальных) с коэффициентами нелинейных форм, зависящими от третьей ко-ординаты. Показано, как можно автоматизировать вычисления неизвестных коэффициентов для формирования гидродинамических полей (скоростей и температуры).
Работа посвящена проблеме построения точных решений вырождающегося уравнения теплопроводности со степенной нелинейностью в случае многих независимых переменных при наличии пространственной (например, осевой или центральной) симметрии. Предложен новый класс автомодельных решений, нахождение которых сводится к решению задачи Ко-ши для нелинейного обыкновенного дифференциального уравнения второго порядка, имею-щего особенности при старшей производной относительно искомой функции и/или незави-симой переменной. Изучение обыкновенного дифференциального уравнения проводится двумя способами: аналитическим и численным. В ходе аналитического исследования приме-няются отрезки рядов Тейлора с рекуррентно вычисляемыми коэффициентами, для которых получены явные формулы. Для численного решения задачи используется итерационный ал-горитм, основанный на методе коллокаций и радиальных базисных функциях. Проведенный численный анализ показал сходимость предложенного численного алгоритма, а также его достаточную точность, позволяющую использовать найденные автомодельные решения для верификации приближенных решений исходного уравнения теплопроводности. Также чис-ленный анализ позволил оценить радиус сходимости построенных рядов Тейлора. Вид по-строенных автомодельных решений, а именно их неограниченность вблизи центра (оси) симметрии, дал возможность исследовать поведение и точность обладающих тем же свой-ством численных решений нелинейного вырождающегося уравнения параболического типа, полученных с помощью предложенного авторами ранее пошагового метода решения.
В работе приведена математическая модель биологической ткани с учетом деформации внеклеточного матрикса.
В работе приведена математическая модель двухфазной фильтрации в твёрдом скелете с переменной пористостью, которая описывает фильтрацию воды и воздуха в ледовом пороупругом скелете. В двумерном случае рассмотрена фильтрация в тонком слое, получены решения в квадратурах. В модельном одномерном случае исследовано на устойчивость решение системы уравнений.