Статья: АВТОМОДЕЛЬНЫЕ РЕШЕНИЯ МНОГОМЕРНОГО ВЫРОЖДАЮЩЕГОСЯ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ СО СТЕПЕННОЙ НЕЛИНЕЙНОСТЬЮ
Работа посвящена проблеме построения точных решений вырождающегося уравнения теплопроводности со степенной нелинейностью в случае многих независимых переменных при наличии пространственной (например, осевой или центральной) симметрии. Предложен новый класс автомодельных решений, нахождение которых сводится к решению задачи Ко-ши для нелинейного обыкновенного дифференциального уравнения второго порядка, имею-щего особенности при старшей производной относительно искомой функции и/или незави-симой переменной. Изучение обыкновенного дифференциального уравнения проводится двумя способами: аналитическим и численным. В ходе аналитического исследования приме-няются отрезки рядов Тейлора с рекуррентно вычисляемыми коэффициентами, для которых получены явные формулы. Для численного решения задачи используется итерационный ал-горитм, основанный на методе коллокаций и радиальных базисных функциях. Проведенный численный анализ показал сходимость предложенного численного алгоритма, а также его достаточную точность, позволяющую использовать найденные автомодельные решения для верификации приближенных решений исходного уравнения теплопроводности. Также чис-ленный анализ позволил оценить радиус сходимости построенных рядов Тейлора. Вид по-строенных автомодельных решений, а именно их неограниченность вблизи центра (оси) симметрии, дал возможность исследовать поведение и точность обладающих тем же свой-ством численных решений нелинейного вырождающегося уравнения параболического типа, полученных с помощью предложенного авторами ранее пошагового метода решения.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 2
Предпросмотр документа
Информация о статье
- EISSN
- 2410-9908
- Журнал
- DIAGNOSTICS, RESOURCE AND MECHANICS OF MATERIALS AND STRUCTURES
- Год публикации
- 2024