Книга содержит элементарное изложение основ функционального анализа. В первых двух главах изучается конечно-мерное евклидово пространство, и на этом примере читатель подготавливается к введению в последующих главах общих абстрактных понятий функционального анализа. Далее рассматриваются метрические пространства и непрерывные операторы в них. Вводится основной класс пространств, изучаемых в книге, — нормированные пространства. Отдельная глава посвящена гильбертову пространству, которое вводится как частный случай нормированного пространства.
Даются обе классические реализации бесконечно-мерного сепарабельного гильбертова пространства — координатная и функциональная. Попутно указываются два подхода к построению функциональной реализации гильбертова пространства: обычная конструкция идентификации элементов пространства с квадратом, и построение пространства элементов непрерывной промежуточной нормы, задаваемых своими средними значениями.
В книге изучаются также линейные непрерывные функционалы в указанных пространствах, проводится детальное исследование спектральных задач, в частности, вполне непрерывных операторов. Конечная часть книги посвящена введению в теорию обобщённых функций и распределений. Дается краткое представление о задачах функционального анализа в приложении к современным направлениям полуупорядоченных пространств. Приводятся многочисленные примеры из алгебры, анализа, теории функций, дифференциальных и интегральных уравнений.