SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Chronic non-communicable diseases account for more than 70% of global mortality statistics. The main share is made up of diseases of the cardiovascular system. Adequate preventive measures—impact on controllable and conditionally controllable risk factors—can reduce the contribution of these diseases to the structure of mortality. A significant effect can be achieved with an adequately selected level of physical activity, but doctors do not always recommend specific actions to patients. This article describes a prototype of a cognitive assistant for constructing personalized plans for therapeutic physical exercises for relatively healthy people and people suffering from cardiovascular diseases. The developed system consists of two main components: a cardiovascular risk assessment module and an exercise planning module. The risk assessment module consists of a knowledge base and an argumentative reasoning algorithm. Its task is to identify risk factors and levels, which is dual in nature: in the case of monitoring a relatively healthy user, the risk of developing cardiovascular disease is assessed, while in the case of interaction of the system with a user with cardiovascular disease, the risk of complications of a chronic form is assessed—development of a cardiovascular event. The exercise planning module includes an exercise database and a scheduler algorithm. The planning algorithm selects optimal therapeutic physical exercises according to optimal criteria, in order to form a plan that will not harm the patient and will increase his physical performance. The developed mechanism allows you to create training scenarios for users with any level of initial training, taking into account the available sports equipment, the preferred location for training (home, street, gym) and at any level of the cardiovascular continuum.
The paper presents a new multimodal approach to analyzing the psycho-emotional state of a person using nonlinear classifiers. The main modalities are the subject’s speech data and video data of facial expressions. Speech is digitized and transcribed using the Scribe library, and then mood cues are extracted using the Titanis sentiment analyzer from the FRC CSC RAS. For visual analysis, two different approaches were implemented: a pre-trained ResNet model for direct sentiment classification from facial expressions, and a deep learning model that integrates ResNet with a graph-based deep neural network for facial recognition. Both approaches have faced challenges related to environmental factors affecting the stability of results. The second approach demonstrated greater flexibility with adjustable classification vocabularies, which facilitated post-deployment calibration. Integration of text and visual data has significantly improved the accuracy and reliability of the analysis of a person’s psycho-emotional state
С развитием цифровизации традиционные методы анкетирования потребителей с целью оценки степени их удовлетворённости качеством услуг уступают место подходу, основанному на автоматической обработке текстовых массивов социальных медиа. Целью работы является определение степени удовлетворённости качеством медицинских услуг пациентов посредством разработки и апробации алгоритма классификации русскоязычных текстовых отзывов, извлечённых из социальных медиаресурсов. Интерес представляет определение тональности отзывов пациентов (положительный/отрицательный) о работе медицинских учреждений и врачей, а также объекты обращения отзыва - качество оказанных медицинских услуг или организация обслуживания пациентов медицинским учреждением. Разработан метод классификации текстовых отзывов о работе медицинских учреждений, размещённых пациентами на двух сайтах отзывов о врачах в России. Проанализировано около 60 тысяч отзывов. Апробированы методы машинного обучения с использованием различных архитектур искусственных нейронных сетей. Разработанный алгоритм классификации имеет высокую эффективность - лучший результат показала архитектура на основе рекуррентной нейронной сети (показатель точности = 0.9271). Применение метода поиска именованных сущностей к текстовым сообщениям позволило повысить эффективность классификации для каждого из классификаторов, базирующихся на использовании нейронных сетей. Для повышения качества классификации требуется семантическое разбиение отзыва по объекту обращения и тональности и последующий учёт полученных фрагментов отдельно друг от друга.
В статье предложена реализация простого интеллектуального помощника, работающего по модели классификации намерений. Предложен алгоритм распределенной платформы, которая определяет намерение пользователя и отвечает заготовленным ответом в один из каналов. Представлен пайплайн обработки данных и модель, работающая с полными и разреженными признаками. Обучены несколько архитектур, выбрана лучшая, с учётом метрик быстродействия и точности.
В настоящее время управление вычислительными ресурсами в современных системах распределенных вычислений является актуальной проблемой. Эволюция потенциала инфраструктуры привела к тому, что распределенные вычисления могут быть организованы в динамичных гетерогенных и географически распределенных вычислительных средах, примерами которых являются среды «туманные» и «краевые». Динамика как нагрузки, так и топологии подразумевает необходимость смены конфигурации системы, а именно закрепления пользовательских задач за вычислительными устройствами с выделением необходимых ресурсов. Последнее актуализирует вопрос повышения эффективности функционирования планировщика (брокера), обеспечивающего управление ресурсами сети в пределах выделенного фрагмента. Алгоритмическое и программное обеспечение планировщиков основано на моделях и методах теории расписаний и, исходя из постановки задачи, реализует либо простые эвристики, либо методы математического программирования, либо метаэвристики. Однако анализ представленных в открытом доступе постановок задач показал, что они, во-первых, являются частными случаями и реализуют определенные ситуации распределения вычислительных ресурсов, во-вторых, не отражают в полной мере свойств гетерогенности, географической распределенности и динамики вычислительных сред. В рамках данного исследования предложена общая модель задачи распределения вычислительных ресурсов с учетом перечисленных свойств и предложен ее метод решения с использованием предметной онтологии метаэвристических методов. Показана целесообразность построения и применения онтологии на примере анализа эффективности генетических алгоритмов в зависимости от значений параметров решаемой задачи распределения вычислительных ресурсов.