SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Брошюра написана по материалам лекций, прочитанных автором в Летней школе «Современная математика» в Дубне в июле 2005 г. В первой части описывается возможное поведение типичных динамических систем на плоскости и двумерной сфере, т. е. рассматривается вопрос о том, куда могут накапливаться траектории динамической системы. Вторая часть брошюры рассказывает о том, что многомерный случай принципиально отличается от двумерного — анализируется пример отображения (подкова Смейла) со счётным числом периодических орбит, не исчезающих при малом возмущении.
От читателя не потребуется никаких знаний из теории дифференциальных уравнений, предполагается лишь знакомство с понятием производной. Брошюра адресована старшим школьникам и студентам.
Брошюра написана по материалам лекции, прочитанной автором в летней школе «Современная математика» в Дубне в июле 2004 г. Она посвящена одному из разделов теории динамических систем — аттракторам и их хаусдорфовой (фрактальной) размерности. Рассматриваются различные примеры отображений, порождающие как странные, так и классические аттракторы. В качестве основного примера странных аттракторов рассматривается соленоид Смейла—Вильямса, проводится аналогия между ним и канторовым совершенным множеством.
От читателя не требуется никаких начальных знаний из теории дифференциальных уравнений. Брошюра адресована старшим школьникам и студентам младших курсов.
Книга содержит задачи по программированию различной трудности. Большинство задач приводятся с решениями. Цель книги | научить основным методам построения корректных и быстрых алгоритмов.
Для учителей информатики, старшеклассников, студентов младших курсов высших учебных заведений. Пособие может быть использовано на кружковых и факультативных занятиях в общеобразовательных учреждениях, в школах с углублённым изучением математики и информатики, а также в иных целях, не противоречащих законодательству РФ.
Предыдущее издание книги вышло в 2017 г
Начиная с рассуждения Галилея о том, что скорость падения тела не может быть пропорциональна пройденному пути, мы приходим к определению логарифма как площади под гиперболой и экспоненты как обратной (к логарифму) функции. Брошюра написана по материалам лекции для школьников 10{11 классов, прочитанной автором по приглашению А. В. Спивака.
Первое издание книги вышло в 2005 г
Сборник задач по геометрии рассчитан на школьников средних и старших классов, а также преподавателей и любителей математики. Он содержит более 750 задач, по большей части снабжённых решениями, а также задачи для самостоятельного решения (многие | с указаниями). Каждый раздел предваряется кратким перечнем сведений, нужных для понимания и решения задач. Необходимые чертежи (более 450) вынесены на поля.
Прорешав задачи сборника, читатель познакомится с основными фактами и методами школьного курса планиметрии и (мы надеемся) получит удовольствие.
Предыдущее издание книги вышло в 2015 г
На примерах излагаются первые понятия теории вероятностей (вероятность события, правила подсчёта вероятностей, условная вероятность, независимость событий, случайная величина, математическое ожидание, дисперсия).
Брошюра рассчитана на читателей, свободно оперирующих с дробями и процентами.
Предыдущее издание книги вышло в 2012 г.
Книга посвящена двадцатилетию Конкурса Мёбиуса, проводимого Независимым Московским университетом. Победители конкурса первых десяти лет рассказывают в ней о роли конкурса в их жизни и о математике, которой они занимаются сейчас.
Книга рассчитана на широкий круг математической общественности, начиная со студентов-математиков
Эта брошюра, написанная выдающимся современным математиком академиком РАН В. И. Арнольдом, основана на прочитанных автором популярных лекциях для старшеклассников. В живой и увлекательной форме излагаются основы теории алгебраических кривых в самых разных аспектах: от свойств конических сечений и до шестнадцатой проблемы Гильберта и понятия рода комплексной кривой.
Рекомендуется всем интересующимся математикой, начиная со
старшеклассников и студентов младших курсов.
Недавнее появление астроид и гипоциклоид в качестве ответов и моделей в целом ряде различных задач теории особенностей, теории каустик и волновых фронтов, теорий эволют и эвольвент, сделало ясным фундаментальное значение этих объектов и привело к открытию большого числа новых фактов, относящихся то к геометрии и анализу, то к физике и теории распространения волн, то к симплектической и контактной топологии, то к вариационному исчислению и оптимальному управлению.
Обнаружение связи между гессиановой топологией и астроидальной геометрией явилось полной неожиданностью и немедленно привело к быстрому прогрессу в обеих областях, который и описан в настоящей книге.
По материалам этой книги автором был прочитан миникурс участникам Летней школы «Современная математика» (школьникам старших классов и студентам I— II курсов) в Дубне 17—26 июля 2001 года.
Книга представляет интерес для широкого круга подготовленных читателей, интересующихся математикой.
В брошюре рассказано о зарождении математики и её дедуктивном построении. Рассмотрены два примера — теорема Пифагора и задача описания всех пифагоровых троек.
Текст брошюры представляет собой обработку записи лекции, прочитанной лауреатом Государственной премии СССР академиком РАН Д. В. Аносовым 5 декабря 1999 года для участников III Международного математического турнира старшеклассников <Кубок памяти А. Н. Колмогорова> — школьников 8—11 классов.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей…
Первое издание — январь 2000 года.