SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Цели. Лазерная порошковая наплавка – перспективная технология в машиностроении, позволяющая эффективно восстанавливать изношенные поверхности деталей и создавать специальные покрытия с ценными свойствами. Методы математического моделирования имеют решающее значение в исследовании и развитии технологии лазерной наплавки. Процесс нанесения порошкового покрытия предполагает перемещение распылительной головки относительно поверхности детали, образуя валик – дорожку напыления. Покрытия формируются путем последовательного нанесения этих дорожек. Целью исследования является изучение различных методов аппроксимации профиля и оптимизация технологических параметров в процессах порошковой лазерной наплавки.
Методы. Использованы методы математического моделирования для описания зависимостей параметров профиля дорожек напыления при лазерной наплавке от технологических параметров процесса. Получение контуров профилей сечения наплавки осуществлялось методами анализа изображений микрофотографий шлифов поперечных сечений деталей с наплавкой. Для аппроксимации кривых контуров сечений использовались методы линейного и нелинейного регрессионного анализа. Зависимость параметров контуров профилей сечения наплавки от технологических параметров напыления аппроксимировалась двухфакторным уравнением параболической регрессии. Поиск оптимальных значений технологических параметров напыления осуществляли методом условной оптимизации с линейной аппроксимацией доверительной области.
Результаты. Рассмотрены три варианта аппроксимирующих функций профиля сечения дорожки наплавки, из которых была выбрана нелинейная двухпараметрическая функция. Получены отображения множества технологических параметров наплавки во множество параметров аппроксимирующей линии контура. С использованием регрессионных моделей данных отображений найдены оптимальные значения технологических параметров наплавки, обеспечивающие максимальную величину площади контура наплавки при ограничениях на долю области подплавления к общей площади сечения. Аппроксимирующая функция профиля сечения дорожки наплавки использована для расчета оптимального шага нанесения дорожек, обеспечивающего наиболее ровную поверхность наплавки.
Выводы. Результаты проведенного исследования могут рассматриваться в качестве методики оптимизации технологических параметров лазерной наплавки порошковых металлов, позволяющей обеспечивать заданные характеристики профиля дорожки напыления и выбирать шаг нанесения дорожек, при котором достигается наиболее ровная поверхность наплавки.
Никелевые сплавы применяются в различных отраслях благодаря привлекательным механическим свойствам. Никелевые сплавы также активно используются в аддитивном производстве для получения сложнопрофильных изделий. Метод прямого лазерного выращивания сопряжен с высокими скоростями нагрева и охлаждения, на которые можно влиять с помощью параметров выращивания, таких как мощность лазерного излучения и скорость выращивания.
Цель — получение диффузионно-кинетической модели для расчета размера интерметаллидной фазы при различных режимах прямого лазерного выращивания в никелевых сплавах.
Материалы и методы. Рассмотрена модель для расчета размера интерметаллидной фазы в никелевом трехкомпонентном сплаве при условии химической реакции только легирующих элементов друг с другом.
Результаты. Расчет размера интерметаллидной фазы позволит прогнозировать механические свойства изделий при прямом лазерном выращивании до фактического получения изделий. Следующим шагом является валидация данной диффузионно-кинетической модели при условии химической реакции только легирующих элементов друг с другом.
Выводы. В работе представлена модель для расчета размера интерметаллидной фазы из легирующих элементов в трехкомпонентном никелевом сплаве. Модель поможет в прогнозировании размеров интерметаллидов и, следовательно, в прогнозировании механических свойств изделий.
Методами современного физического материаловедения исследована структура, микротвердость и трибологические свойства быстрорежущей стали Р18Ю, легированной азотом и алюминием направленной на валки из среднеглеродистой стали 30ХГСА. Плазменная наплавка осуществлена в закрытой среде азота порошковой проволокой. Проведен регулируемый термический цикл для получения равномерного состояния и предотвращения формирования холодных трещин. Выявлено, что наплавленный слой имеет структуру ячеисто-дендритного типа. Зерна обогащены атомами железа, а границы разделены тонкими прослойками второй фазы, обогащенными атомами хрома, алюминия, вольфрама и ванадия. Внутри центральной части зерен обнаружены включения игольчатого типа длиной 150-730 нм. Четырехкратный высокотемпературный отпуск при 580 °С в течении 1 часа обеспечивает: растворение наноразмерных включений в объеме зерен; способствует более равномерному распределению легирующих элементов; формирует структуру пластинчатого (игольчатого) типа, характерную по морфологическому признаку для игольчатого мартенсита. Выдвинуто и обосновано предположение, что зерна наплавленного слоя сформированы твердым раствором γ-железа (аустенита). Выявлено незначительное снижение микротвердости, износостойкости и коэффициента трения наплавочного слоя после высокотемпературного отпуска. Такое поведение наплавочного материала при высокотемпературном отпуске может быть обусловлено релаксацией термических напряжений, сформированных в слое при наплавке.
Методами просвечивающей дифракционной электронной микроскопии на тонких фольгах проведены исследования влияния металла наплавки, выполненной сварочной проволокой типа 35Х5ГФНВМ, на структуру подложки из стали 20. Выполнен количественный анализ изменения тонкой структуры материалов подложки и наплавки на различном расстоянии (0,5 и 3,0 мм) от линии сплавления. Определены морфологические составляющие структуры, их объемная доля и фазовый состав. Установлено, что в исходном состоянии сталь 20 представлена пластинчатым перлитом и ферритом. Наплавка сварочной проволокой привела к существенному разрушению пластинчатого перлита, полной фрагментации феррита, выделению мелких частиц цементита на границах и в стыках фрагментов феррита, созданию упруго-напряженного состояния матрицы стали и упрочнению подложки в 1,5 раза.
В работе рассмотрено изучение влияния защитного газа на течение плазмы электрической дуги и расплавленного металла. Представлено моделирование влияния защитного газа на течение плазмы электрической дуги расплавленного металла и разработана математическая модель, описывающая течение плазмообразующего газа внутри устройства, формирующего необходимые направления плазменных потоков для образования капли расплавленного электродного металла необходимых размеров. Установлено, что защитный газ и его давление влияют на скорость истечения газа, а также на формирование и размер капли электродного металла. При увеличении давления защитного газа изменяется время образования и отрыва капли: чем выше давление газа, тем капля имеет меньший объем. Аргон и углекислый газ по-разному оказывают влияние на течение плазмы электрической дуги, длину дуги, формирование и отрыв капли. Изменяя газовый состав, давление и скорость газа можно управлять процессом формирования капли. Определено, что с увеличением расхода газа с 10 до 30 л/мин происходит увеличение скорости истечения газа с 1,2 до 5,2 м/с и уменьшение объема капли расплавленного электродного металла. Объем капли может меняться в среднем на 65 % в зависимости от защитного газа.
Методами канавки и рентгеноструктурного анализа исследовано напряженное состояние в наплавленных прокатных валках с высокой твердостью поверхностного слоя из сплава типа Р2М9, сформированного плазменной наплавкой в среде азота. Установлено, что для работоспособности валков более благоприятно напряженное состояние в наплавленных валках, чем в валках, изготовленных по традиционной технологии. Для распределения напряжений по сечению наплавленного валка характерен плавный переход от сжимающих напряжений (600 МПа) в наплавленном слое к растягивающим напряжениям в основе валка (200 МПа). Повышение износостойкости наплавленных валков можно объяснить наличием в структуре твердого раствора α-Fe и мелкодисперсных карбонитридов на основе железа, вольфрама, хрома, молибдена и алюминия и созданием благоприятного напряженного состояния в поверхностном слое за счет реализации термического цикла плазменной наплавки в среде азота с низкотемпературным подогревом с последующим высокотемпературным отпуском.