SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Книга: Азбука группового анализа

Групповой анализ служит для описания свойств дифференциальных уравнений при помощи допускаемых групп преобразований. Он даёт практические методы понижения порядка или полного интегрирования отдельных дифференциальных уравнений и построения отдельных классов точных решений линейных и нелинейных уравнений математической физики.

Настоящая брошюра включает фрагменты курса лекций по групповому анализу, читаемого автором в Московском Физико-техническом институте.

Формат документа: pdf, djvu
Год публикации: 1989
Кол-во страниц: 44 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Высшая математика для начинающих физиков и техников

Настоящая книга представляет собой введение в математический анализ. Наряду с изложением начал аналитической геометрии и математического анализа (дифференциального и интегрального.
исчисления) книга содержит понятия о степенных и тригонометрических рядах и о простейших дифференциальных уравнениях, а также затрагивает ряд разделов и тем из физики (механика и теория колебаний, теория электрических цепей, радиоактивный распад, лазеры и др.).

Книга рассчитана на читателей, интересующихся естественнонаучными приложениями высшей математики, преподавателей вузов и втузов, а также будущих физиков и инженеров.

Формат документа: pdf, djvu
Кол-во страниц: 510 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Руководство по решению задач по математическому анализу

Руководство предназначено для студентов высших учебных заведений и особенно для тех, кто самостоятельно, без повседневной квалифицированной помощи преподавателя, изучает математический анализ и желает приобрести необходимые навыки в решении задач.

Один из классических задачников по математическому анализу.

Формат документа: pdf, djvu
Год публикации: 1966
Кол-во страниц: 333 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Введение в методы теории функций пространственного комплексного переменного

Теория функций комплексного переменного ТФКП дошла до наших дней почти в том виде, в котором оставил нам ее создатель великий французский математик Огюстен Коши (1789-1857 гг.). Связность функций на комплексной плоскости наиболее адекватно отражает ту связность, которая существует в реальных физических процессах. Методы ТФКП применяются во всех областях математического естествознания, начиная от макромира и кончая микромиром. Алгебра комплексных чисел отвечает классическим операциям над действительными числами. Поле комплексных чисел получено из поля действительных чисел присоединением лишь одного корня квадратного уравнения, не имеющего решения на действительной оси. С точки зрения современной абстрактной алгебры поле комплексных чисел алгебраически замкнуто, то есть, рассматривая корни многочленов, нельзя получить новых чисел. Связность пространства, адекватно отражающего связность реального мира, требует создания аппарата комплексной пространственной алгебры с законами действительных и комплексных чисел.

Формат документа: pdf, djvu
Год публикации: 1990
Кол-во страниц: 333 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Методы теории вомущений для нелинейных систем

Излагаются методы теории возмущений нелинейных систем обыкновенных дифференциальных уравнений с малым параметром. В основном рассматриваются гамильтоновы системы уравнений, а затем все выводы обобщаются на случай негамильтоновых систем. Отражены как классические, так и новые методы теории возмущений, в том числе и методы, созданные самим автором. Проведен сравнительный анализ разных методов. Описание теоретических основ методов проиллюстрировано примерами из механики.

Глубина, подробность и ясность изложения делают книгу весьма полезной как для специалистов по качественной теории дифференциальных уравнений и по небесной механике, так и для начинающих исследователей.

Формат документа: pdf, djvu
Кол-во страниц: 323 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Сборник задач и упражнений по математическому анализу

В сборник включено свыше 4000 задач и упражнений по важнейшим разделам математического анализа: введение в анализ, дифференциальное исчисление функций одной переменной, неопределенный и определенный интегралы, ряды, дифференциальное исчисление функций нескольких переменных, интегралы, зависящие от параметра, кратные и криволинейные интегралы. Почти ко всем задача даны ответы! В приложении помещены таблицы.

Для студентов физических и механико-математических специальностей высших учебных заведений.

Формат документа: pdf, djvu
Год публикации: 1997
Кол-во страниц: 624 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Рекурсивный математический анализ

Основу этой книги составляют две монографии Р. Л. Гудстейна: «Рекурсивная теория чисел» и «Рекурсивный анализ». Монография «Рекурсивная теория чисел» содержит систематическое и обстоятельное описание и исследование построенного Гудстейном исчисления п. р. равенств и некоторых модификаций этого исчисления; в ней описываются и изучаются также некоторые „надстройки“ над исчислением равенств, использующие определенные расширения языка исчисления равенств и допускающие „переводы“ в исчисление равенств; излагаются и некоторые традиционные разделы теории рекурсивных функций, а также некоторые разделы элементарной теории чисел, допускающие „вложение“ в исчисление равенств. В монографии «Рекурсивная теория чисел» устанавливается также, что теорема о неполноте аксиоматизаций арифметики, доказанная К. Гёделем для традиционной аксиоматизации арифметики и ее расширений, переносится и на исчисление равенств и его расширения. Монография «Рекурсивный анализ» суммирует основные результаты ее автора в области рекурсивного анализа (этим термином Гудстейн называет разрабатываемый им вариант конструктивного математического анализа).

Формат документа: pdf, djvu
Год публикации: 1970
Кол-во страниц: 236 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Внешние дифференциальные системы и вариационное исчисление

Книга крупного американского математика, отражающая современный взгляд на классическое вариационное исчисление. Она выгодно отличается от имеющейся литературы тщательным отбором материала, использованием современного математического аппарата, большим количеством разобранных примеров.

Автор известен нашему читателю по переводу двухтомника «Принципы алгебраической геометрии», написанного в соавторстве с Дж. Харрисом.

Формат документа: pdf, djvu
Год публикации: 1986
Кол-во страниц: 366 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Лекции по аналитической теории дифференциальных уравнений

В настоящей книге изложено с некоторыми дополнениями содержание лекций, читанных в течение ряда лет студентам и аспирантам МГУ. Задачей курса было познакомить слушателей с классическими вопросами теории аналитических функций, выходящими за пределы содержания курсов и учебников по основам теории аналитических функций. Аналитическая теория дифференциальных уравнений, помимо своих собственных задач и методов, дает чрезвычайно удобный материал для ознакомления с перечисленными выше вопросами. С этой точки зрения и написана настоящая книга. При ее составлении автор использовал ряд заметок, сделанных на лекциях слушателями.

Формат документа: pdf, djvu
Год публикации: 1950
Кол-во страниц: 436 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Контрпримеры в анализе

В книге рассматриваются многочисленные примеры из математического анализа и теории функций действительного переменного, цель которых - обратить внимание на ряд “опасных” вопросов, на которые неопытный читатель может дать неправильные ответы. Такие контрпримеры систематически подобраны автором, и поэтому книга может служить очень хорошим дополнением к обычным учебным курсам. Это позволит читателю активно включиться в изучение материала. Книга будет полезна студентам университетов, пединститутов и втузов, изучающим математический анализ и теорию функций.

Формат документа: pdf, djvu
Год публикации: 1967
Кол-во страниц: 251 страница
Загрузил(а): Афонин Сергей
Доступ: Всем