SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Данная работа является дискуссионной и посвящена раскрытию методологических ошибок научных исследований, часто наблюдаемых в русскоязычной научной периодике. C заключением эффективного контракта профессорско-преподавательский состав университетов искусственно стимулируется к научно-публикационной деятельности, что повышает актуальность исследования ментальных действий, которые совершают молодые ученые для получения нового научного знания. В этом контексте остро встает вопрос о том, не получилось ли новое научное знание у исследователя результатом совершенных методологических ошибок, допущенной исследовательской небрежности. На примере отдельно взятой статьи, посвященной применению системного подхода к промышленному Интернету вещей, автор подчеркивает ряд методологических ошибок и раскрывает важность глубины обзора литературы как ключевой характеристики накопления базовых знаний. Также автор подчеркивает значимость четкого определения предмета и объекта исследования и рекомендует расписывать методологию исследования не только в отдельно взятом параграфе, а более конкретно, применительно к каждому этапу и разделу исследования. Для того чтобы раскрыть методологические ошибки научного исследования, автору приходится вернуться к определению научной методологии, системного анализа и промышленного Интернета вещей. На примере конкретной работы автор подчеркивает необходимость строгого и четкого применения общенаучных методов исследования, а также важность глубины обзора литературы, который не должен отражать субъективное незнание ученого. Также автор подчеркивает опасность смены направления научного исследования относительно специальности высшего образования молодого ученого, что может привести к путанице субъективного и объективного незнания из-за поверхностного обзора литературы.
Статья посвящена определению перспективы совершенствования управления конкурентоспособностью бизнеса через расширение использования технологий искусственного интеллекта и больших данных для его устойчивого развития в России. Методология исследования базируется на применении метода регрессионного анализа, с помощью которого осуществляется моделирование влияния факторов использования цифровых технологий в бизнесе на конкурентоспособность экономики. Временной период исследования охватывает границы Десятилетия науки и технологий: используется статистика за 2022 г. и составляется прогноз на период до 2031 г. В результате на основе опыта топ-30 стран с наиболее активным использованием цифровых технологий в бизнесе в 2022 г. авторами составлена эконометрическая модель конкурентоспособности экономики. С опорой на эту модель раскрыта перспектива использования искусственного интеллекта и больших данных в управлении конкурентоспособностью бизнеса России для его устойчивого развития в Десятилетие науки и технологий. Главный авторский вывод по итогам проведенного исследования сводится к тому, что перспектива укрепления конкурентоспособности и устойчивого развития бизнеса в России в Десятилетие науки и технологий связана с ростом активности использования бизнес-структурами технологий искусственного интеллекта и больших данных. Авторами обоснована целесообразность активной технологической модернизации бизнеса для укрепления технологических конкурентных преимуществ, обладающих большой ценностью в современной рыночной среде. Авторами приведена научная аргументация того, что технологии искусственного интеллекта и больших данных более предпочтительны (вносят гораздо больший вклад в конкурентоспособность), чем технологии Интернета вещей и облачные сервисы. Практическая значимость полученных авторами результатов связана с тем, что составленные рекомендации по повышению активности использования искусственного интеллекта и больших данных в российском бизнесе позволят наиболее полно раскрыть потенциал роста его конкурентоспособности. Предложенные контрольные значения соответствующих показателей послужат для этого ориентирами в поддержку устойчивого развития бизнеса России.
В статье представлен материал, полученный в ходе «общения» с программой Character AI, идентифицирующей себя с автором романа «Мы» Е.И. Замятиным. Проведенный анализ позволяет сделать выводы о том, что чат-бот в ряде случаев транслирует заведомо ложную информацию, которая может рассматриваться как пропаганда конкретных взглядов и идей, заложенных в программу ее создателями с определенными целями. Доказывается, что идентификация взглядов, намеренно искажающих действительность, возможна только в том случае, если пользователь обладает специальными знаниями.
В статье рассматриваются актуальные проблемы цифровой трансформации образования в мире в первые десятилетия ХХI в. Проанализированы процесс внедрения цифровых технологий в образовательно-цифровую среду вузов, обоснованность использования цифровых технологий, в том числе мобильных приложений, в процессе обучения, а также основные направления и возможные перспективы развития данного феномена.
В данной статье рассматривается применение нейронных сетей в преподавании иностранных языков. Даны основные определения и анализируются достоинства и недостатки одного из прикладных обучающих приложений, использующих современную нейросеть ChatGPT, в процессе разработки дидактических материалов по английскому языку.
В статье рассмотрены аспекты и возможности значительного повышения эффективности и доступности образования с использованием искусственного интеллекта, что открывает новые возможности для обучающихся и преподавателей. Уделяется особое внимание рассмотрению проблем разработки инновационных методик обучения, которые учитывают индивидуальные потребности каждого ученика. С помощью алгоритмов машинного обучения можно определить наиболее эффективные стратегии обучения для каждого учащегося, а также предлагать персонализированные задания и материалы. Показана интеграция искусственного интеллекта в сферу образования, имеющая множество возможностей для улучшения и преобразования образовательной среды.
Прогнозирование добычи нефти играет важную роль в эффективной разработке месторождения нефти. Это помогает скорректировать действующую систему разработки месторождения. Детальное и точное прогнозирование уровня добычи нефти необходимо для оценки экономической и технологической эффективности разработки месторождения нефти. Прогнозирование уровня добычи можно осуществить различными способами. Одним из таких может быть использование специального программного обеспечения (tNavigator и др.). Использование данного программного обеспечения иногда сопряжено с длительными расчетами, поэтому для оперативного прогнозирования уровня добычи возможно использование других инструментов, таких как машинное обучение.
Использование машинного обучения и искусственного интеллекта в нефтегазовой отрасли приобретает все большую популярность в последние годы, поскольку, используя исторические данные по добыче, возможно прогнозирование уровней добычи нефти/жидкости. Кроме того, для аналогичных целей могут быть использованы аналогичные месторождения со схожими геологическими характеристиками и историей эксплуатации. Помимо использования машинного обучения и искусственного интеллекта, в качестве инструмента прогнозирования возможно применение анализ кривой падения.
Учитывая важность прогнозирования с точки зрения стратегического планирования, предлагается широкий спектр методов для получения точных прогнозов, основанных на характере доступных данных и вычислительной мощности. В данной статье представлен всесторонний анализ инструментов, используемых для долгосрочного прогнозирования добычи нефти, включая алгоритмы машинного обучения и анализ кривой падения добычи (DCA). Представлены результаты применения модели с долговременной и кратковременной памятью и ее практическая применимость на примере ее использования на скважине кандидате.
В статье рассмотрены потенциальные возможности искусственного интеллекта для использования учителем информатики: индивидуализация обучения, атоматизация оценки, анализ данных. Представлен опыт работы учителя информатики по элективному курсу на уровне среднего общего образования. Рассмотрены возможности генеративных нейронных сетей для обработки текстовой, графической и мультимедийной информации на уроках информатики и во внеурочной деятельности. Приводятся примеры интернет-ресурсов, которые могут использоваться учителем информатики для подготовки к урокам и во внеурочной деятельности на различных платформах.
Цель исследования. Провести систематический анализ данных, имеющихся в современной литературе, о возможности использования искусственного интеллекта (ИИ) для построения математических моделей сложных систем, в том числе человеческого организма.
Материал и методы. В обзор включены данные зарубежных и отечественных статей, найденных в Pubmed по данной теме, опубликованных за последние 10 лет.
Результаты. Алгоритмы машинного обучения помогают определять ключевые переменные и взаимосвязи внутри системы, которые людям трудно или невозможно обнаружить. В статье рассматриваются различные типы математических моделей: объяснительные и прогностические, объясняется важность и назначение выбора и стандартизации составляющих модель переменных и знака перед коэффициентами в моделях.
Заключение. Описательные и прогностические модели — это два распространенных типа моделей машинного обучения. Основное различие между ними заключается в цели их использования. Понимание этих различий важно для врачей-исследователей и аналитиков при выборе наиболее подходящего типа модели для своих исследований или для внедрения в процессы принятия решений.
В статье рассмотрены процессы импортозамещения, которые представляют собой тип экономической стратегии и аграрой политики государства, направленный на защиту внутреннего сельскохозяйственного производителя путем замещения импортируемых продовольственных товаров и сырья товарами национального производства. Сама по себе стратегия импортозамещения опирается на развитие всего сельскохозяйственного производства, повышение качества производимой продукции, технологий применяемых на предприятиях АПК, развитие инноваций, в условиях цифровизации. И это особенно актуально для страны, уровень производственных отраслей которой отстает от уровня государств, с которыми она взаимодействует. Исследованием установлено, что тема импортозамещения наиболее актуальна в настоящее время в связи с западными санкциями против России. Поэтому итогом новой экономической политики в этих сложных условиях должно стать именно импортозамещение, которое позволит в значительной степени минимизировать негативный эффект от антироссийских санкций. Цель данной работы сводится к изучению и внедрению в практику стратегии импортозамещения, предполагающей постепенный переход от производства сельскохозяйственной продукции к наукоемкой и высокотехнологичной продукции аграрного сектора страны, путем повышения уровня развития производства и технологий. И это особенно актуально для страны, уровень производственных отраслей которой отстает от уровня государств, с которыми она взаимодействует.