SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Случайная величина - Янга Миллса поле
Ока теоремы - Сложная Функция
Предметный указатель и индекс
Координаты - Одночлен
даламбера оператор - Кооперативная игра
Абак - Гюйгенса принцип
Настоящая книга посвящена изложению вычислительных методов для решения основных задач линейной алгебры.
Этими задачами являются решение системы линейных уравнений, обращение матрицы, решение полной и частичной проблем собственных значений.
Огромное количество численных методов решения этих задач, появившихся главным образом в последние годы, поставило авторов перед необходимостью попытки их систематизации и изложения с некоторых общих точек зрения. При этом авторы старались строить изложение не выходя за области понятий линейной алгебры в той мере, в какой это было возможно. Так, например, авторы сознательно исключили использование теории непрерывных дробей, заменив ее теорией ортогональных полиномов, в которой, в свою очередь, ортогональность понимается в линейно-алгебраическом смысле.
В книге почти не затрагивается важный вопрос о влиянии ошибок округления на результат вычислений.
Первая глава книги носит вводный характер. Остальные восемь глав посвящены изложению вычислительных методов.
Книга посвящена проблеме численного решения стохастических дифференциальных уравнений Ито. Изложены как известные, так и ряд новых результатов, связанных со свойствами стохастических интегралов, стохастическими разложениями процессов Ито, аппроксимацией повторных стохастических интегралов, численными методами для нелинейных и линейных систем стохастических дифференциальных уравнений Ито. Книга адресована специалистам по теории случайных процессов, вычислительной математике, программистам, аспирантам и студентам старших курсов.
В книге излагаются современные методы разностного решения задач математической физики и относящиеся сюда вопросы теории разностных схем.
Книга включает следующие разделы: однородные разностные схемы для решения одномерных уравнений параболического и гиперболического типов, разностные схемы для уравнений эллиптического типа, теория устойчивости разностных схем, экономичные методы решения многомерных задач математической физики, итерационные методы решения разностных уравнений.
В книге содержится значительное количество примеров, иллюстрирующих основные положения теории и способствующих более глубокому ее усвоению.
Книга рассчитана на студентов и аспирантов, специализирующихся в области вычислительной математики, а также на научных сотрудников и инженеров, связанных с численным решением задач математической физики.
Книга написана на основе курса лекций, читавшихся автором па факультете вычислительной математики и кибернетики МГУ, и предназначается для ознакомления с началами численных методов. Теория численных методов излагается с использованием элементарных математических средств, а для иллюстрации качества методов используются простейшие математические модели.
В книге рассматриваются разностные уравнения, численные методы решения обыкновенных дифференциальных уравнений, линейных и нелинейных алгебраических уравнений, разностные методы для уравнений в частных производных.
Для студентов факультетов и отделений прикладной математики вузов.