SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Книга принадлежит перу видного американского математика, известного не только многочисленными научными исследованиями, но и прекрасно написанными учебниками. В книге три основные части; общая теория, распределения и преобразования Фурье; банаховы алгебры и спектральная теория. Наряду с классическими результатами отражены и многие новые факты функционального анализа.
Книга доступна студентам средних курсов математических специальностей университетов и пединститутов. Она, несомненно, окажется полезной всем изучающим или преподающим функциональный анализ.
Книга «Как решать задачу» — отрадное и яркое явление в современной зарубежной методико-математической литературе. Справедливо выдвигая на передний план роль математической задачи в школьном преподавании и предлагая заслуживающую серьезного внимания и опытной проверки методику обучения решению задач (над которой ее автор основательно поработал в течение более двух десятилетий), книга эта ценна и тем, что в ней попутно защищается и ряд других здоровых, но нередко (особенно в практике американской средней школы) игнорируемых принципов педагогики математики.
В книге прослежены пути формирования французской школы теории функций и множеств на рубеже XIX—XX вв., выявлен вклад представителей этой школы (Борель, Бэр, Лебег и др.) в создание новой научной дисциплины, охарактеризовано воздействие их научных представлений на развитие функционального анализа, топологии, теории вероятностей и других математических наук. Книга представляет интерес для математиков и историков науки.
Систематическое и современное изложение комбинаторной теории групп. Значительная часть книги посвящена геометрическим методам и теории малых сокращений, представлены разделы по биполярным структурам Столлингса, разрешимости проблемы тождества слов и др. В книге отражены интенсивные исследования последнего десятилетия. От книги Магнуса и др. с тем же названием, вышедшей в издательстве «Наука» в 1975 г., она выгодно отличается подбором материала и способом изложения. Книга может служить как учебным пособием, так и источником информации для математика-специалиста. Она будет полезна всем, кто занимается теорией групп и смежными вопросами.
Книга посвящена изложению численных решений линейных задач метода наименьших квадратов. Достоинством книги являются: отбор наиболее устойчивых методов, полный анализ устойчивости, рассмотрение среднеквадратичных задач с линейными ограничениями, обзор методов перестройки ортогональных разложений при добавлении или удалении одного или нескольких наблюдений.
Для специалистов по прикладной математике, инженеров, а также дли студентов и аспирантов.
Эллиптические функции — одна из красивейших глав классического анализа. После некоторого периода забвения они снова вызывают широкий интерес и находят применение в различных областях математики — теории чисел, алгебраической геометрии, дифференциальных уравнениях. Книга А. Вейля, видного французского математика, хорошо известного русскому читателю, принадлежит к редкому жанру. Это одновременно живое историко-математическое исследование, начальный курс теории эллиптических функций с многими полными доказательствами и введение в самые современные исследования. Она воплощает преемственность идей в актуальной области классического анализа. Написанная увлекательно и с большим педагогическим мастерством, книга будет интересна математикам различных специальностей и разного уровня подготовки — от студентов младших курсов до сложившихся исследователей.
В книге рассматриваются основы общей теории симметрии (равенства); основные алгебраические структуры; числовые системы. Затронуты вопросы, связанные с общими принципами образования понятий, с природой аксиоматического метода. Книга представляет интерес для математиков, философов, а также преподавателей и студентов соответствующих специальностей.
В книге известного ученого из ГДР рассматриваются принципы построения моделей в рамках общей теории систем в классической и- квантовой механике, электродинамике, теории автоматов, медицине. Описываются методы получения информации из конечного множества моделей и определения адекватности модели и оригинала, а также процедуры построения моделей для некоторых специальных систем. Книга рассчитана на широкий круг научных работников и инженеров, интересующихся проблемами анализа и синтеза сложных систем.
Книга знакомит с рядом идей и понятий современной математики, с общими принципами использования микрокалькуляторов. Представленные в ней головоломки, рисунки, таблицы, схемы носят прикладной характер, позволяют осмыслить прочитанное, а также овладеть навыками по работе с вычислительной техникой. Для детей младшего и среднего школьного возраста.
Что такое число? Что изучает математика? Зачем нужна математика человеку? Как математика боролась с религией? Это ведь самые важные вопросы. На них и отвечает книга «О самом важном в математике».