SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Существующие справочники, рассчитанные на инженеров и студентов, не содержат сведений по вариационному исчислению и интегральным уравнениям. Между тем эти разделы высшей математики широко используются в исследовательской работе и вошли уже в число математических дисциплин, изучаемых в ряде высших технических учебных заведений. Данное справочное руководство имеет своей целью восполнить указанный пробел.
Книга содержит основные сведения из вариационного исчисления и теории интегральных уравнений и их приложений к некоторым вопросам механики и математической физики. Даются также краткие сведения о принципе максимума Л. С. Понтрягина, принципе оптимальности Р. Беллмана и др. Отдельные положения теории иллюстрируются примерами и решениями задач.
Книга предназначается для инженеров, экономистов, а также для студентов, аспирантов высших технических учебных заведений.
В книге дается систематическое изложение одного из эффективных методов современной математической физики — метода интегральных преобразований применительно к задачам теории упругости. Исследуются классы плоских и пространственных задач упругого равновесия, решаемых с помощью интегральных преобразований.
Помимо классических вопросов, рассмотрены некоторые сложные смешанные задачи, служившие предметом оригинальных работ последних лет. В настоящее издание включены некоторые дополнительные вопросы, связанные с методом парных интегральных уравнений.
Неопределенные интегралы — наиболее употребительные формулы высшей математики. Самые разнообразные вопросы математики и ее приложений к технике, естествознанию, экономике, статистике и т. д. приводят к вычислению того или иного интеграла.
Комплект готовых интегралов нужен инженерам, техникам, экономистам, научным и практическим работникам самых разнообразных специальностей. Он необходим и студентам вузов и техникумов. Справочник М. Л.
Смолянского содержит около 1300 интегралов, выпускается небольшим форматом и приспособлен для быстрого отыскания нужной формулы.
Во втором издании изменено расположение таблиц и исправлены замеченные опечатки.
Справочник содержит более 2100 интегральных уравнений с решениями. Особое внимание уделено уравнениям общего вида, которые зависят от произвольных функций или содержат много свободных параметров. Приведено много новых точных решений линейных и нелинейных уравнений. В целом в справочнике описано на порядок больше конкретных интегральных уравнений, чем в существующих книгах других авторов.
Рассмотрен ряд интегральных уравнений, которые встречаются в различных областях механики и теоретической физики (теории упругости, теории пластичности, теории масс- и теплопереноса, аэро- и гидродинамике, теории колебаний, электродинамике и др.).
Справочник предназначен для широкого круга научных работников, преподавателей вузов, инженеров и студентов, специализирующихся в различных областях математики, механики, физики, химии и биологии.
Монография академика Н. И. Мусхелишвили систематически знакомит читателя с математическим аппаратом интегралов типа Коши и сингулярных интегральных уравнений, в разработке которого автор и его ученики принимали активное участие. Значительная часть книги посвящена приложениям этого аппарата к решению многочисленных задач теории потенциала, теории упругости и других разделов математической физики.
Второе издание полностью переработано как в направлении коренной переделки изложения, так и в направлении внесения того нового, что появилось со времени выхода в свет первого издания.
Рассчитана книга на аспирантов и студентов старших курсов физико-математических факультетов, а также на инженеров-исследователей.
Систематически излагается математический аппарат интегралов типа Коши и сингулярных интегральных уравнений, в разработке которого автор и его ученики принимали активное участие. Этот аппарат представляет собой эффективное средство для решения различных граничных задач теории аналитических функций.
Значительная часть книги посвящена приложениям этого аппарата к решению задач теории потенциала, теории упругости и других основных разделов математической физики.
В третьем издании внесены дополнения, отражающие то новое, что появилось со времени выхода в свет второго издания, а также исправлены замеченные погрешности.
При подготовке этого издания я использовал те замечания к первому изданию, которые были сделаны И. М. Гельфандом, С. Крачковским, С. Г. Михлиным, А. Д. Мышкисом и О. А. Олейник. Особенно большую помощь оказала мне О. А. Олейник. Всех этих товарищей я горячо благодарю.
В книге излагаются точные, приближенные аналитические и численные методы решения линейных и нелинейных интегральных уравнений. Помимо классических методов описаны также некоторые новые методы. Для лучшего понимания рассмотренных методов во всех разделах книги даны примеры решения конкретных уравнений. Приведены точные и асимптотические решения интегральных уравнений, встречающихся в различных областях механики и физики.
Приложения содержат таблицы неопределенных и определенных интегралов, а также таблицы интегральных преобразований Лапласа, Меллина и др.
Справочник предназначен для широкого круга научных работников, преподавателей вузов, аспирантов и студентов, специализирующихся в различных областях прикладной математики, механики, физики, теории управления и инженерных наук.
В книге излагаются точные, приближенные аналитические и численные методы решения линейных и нелинейных интегральных уравнений. Помимо классических методов описаны также некоторые новые методы. Для лучшего понимания рассмотренных методов во всех разделах книги даны примеры решения конкретных уравнений. Приведены некоторые точные и асимптотические решения интегральных уравнений, встречающихся в приложениях (в механике и физике).
Справочник предназначен для широкого круга научных работников, преподавателей вузов, аспирантов и студентов, специализирующихся в различных областях прикладной математики, механики, физики, теории управления и инженерных наук.
Даны элементы теории решения сингулярных интегральных уравнений в классе абсолютно интегрируемых и неинтегрируемых функций, а также теории потенциала простого и двойного слоев для уравнения Гельмгольца. На основе этих результатов дано сведение широкого круга краевых задач для уравнений Лапласа и Гельмгольца, а также задач аэродинамики, электротехники и теории упругости к краевым сингулярным или гиперсингулярным интегральным уравнениям. Исследованы некоторые свойства этих уравнений. Для сингулярных интегралов и сингулярных интегральных уравнений приведены методы вычислений и численного решения (типа метода дискретных вихрей и интерполяционного типа) как в классе абсолютно интегрируемых, так и в классе неинтегрируемых функций.
На основе этих результатов было дано математическое обоснование метода дискретных вихрей и численного решения задач аэродинамики. Даны примеры вычислений, приведено построение дискретных математических моделей для ряда важных краевых задач. Также в качестве приложения даны некоторые численные примеры для краевых задач, относящихся к интенсивным газодинамическим течениям и объектам плохообтекаемой тел (т. е. тел, имеющих острые кромки, углы). Кроме этого, построены численные математические модели краевых задач для некоторых плохо обтекаемых тел и приведены резервы по улучшению точности эксперимента в этих прикладных областях. Приведены результаты расчетов конкретных задач.
Для специалистов по численному эксперименту в аэродинамике, теории упругости, дифракции волн, а также инженеров-разработчиков, занимающихся теорией и численными методами в сингулярных интегральных уравнениях. Может быть полезна аспирантам и студентам ВУЗов.