Впервые проведены исследования характеристик продольного тлеющего разряда в сверхзвуковом потоке газа между центральным телом и конфузором. Установлено, что характеристики разряда по пространственной локализации, интенсивности излучения, формированию приэлектродных зон зависят от способов организации сверхзвукового потока. Изучены характеристики потока газа в расширяющейся области сверхзвукового сопла, восстановление давления в конфузоре, параметры срыва сверхзвукового потока. Если в качестве катода использовать центральное тело в виде постоянно подаваемой проволоки цилиндрического профиля, то подобный разряд может найти применение в процессах нанесения функциональных покрытий и нанопокрытий. Из-за концентрации токового пятна на конце катода будет происходить интенсивное катодное распыление. Распыленные атомы будут направленно переноситься вместе с потоком и образовывать покрытия на подложках на входе в конфузор либо подложка может служить анодом разряда.
For the first time, studies of the characteristics of a longitudinal glow discharge in a supersonic gas flow between the Central body and the embarrassment were carried out. It is established that the characteristics of the discharge in terms of spatial localization, radiation intensity, formation of near-electrode zones depend on the ways of organizing the supersonic flow. The characteristics of the gas flow in the expanding region of the supersonic nozzle, the pressure recovery in the embarrassment, the parameters of the supersonic flow failure are studied. If the cathode is used as a Central body in the form of a constantly fed wire of cylindrical profile, then such a discharge can be used in the processes of applying functional coatings and nanocoatings. Due to the concentration of the current spot at the cathode end, intense cathode sputtering will occur. The atomized atoms will be directionally transferred along with the flow and form coatings on the substrates at the entrance to the embarrassment, or the substrate can serve as a discharge anode.
Идентификаторы и классификаторы
- SCI
- Физика
- eLIBRARY ID
- 41716447
В работе впервые проведены экспериментальные исследования характеристик продольного тлеющего разряда в сверхзвуковом потоке газа между центральным телом и конфузором. Изучены характеристики потока газа в расширяющейся области сверхзвукового сопла, восстановление давления в конфузоре, параметры срыва сверхзвукового потока.
Установлено, что сила тока вдоль катода распределена неоднородно, а приэлектродные части разряда сконцентрированы в теневой области потока от центрального тела. При увеличении разрядного тока положительный столб приближается к катоду за пределами сверхзвуковой струи. Этот факт позволяет сделать заключение, что линии напряженности электрического поля пересекают сверхзвуковую струю вблизи катода.
Такой разряд может найти применение в процессах нанесения функциональных покрытий и нанопокрытий. В качестве катода может служить центральное тело в виде постоянно подаваемой проволоки цилиндрического профиля. Из-за концентрации токового пятна на конце катода, на этом участке будет происходить интенсивное катодное распыление. Распыленные атомы будут переноситься вместе с потоком и образовывать покрытия на подложках на входе в конфузор.
Определенные перспективы в применении исследованного разряда просматриваются также для уменьшения лобовых сопротивлении летательных объектов.
Список литературы
1. Даутов Г. Ю., Тимеркаев Б. А. Генераторы неравновесной газоразрядной плазмы. – Изд-во «Фэн», 1996.
2. Galeev I. G., Goncharov V. E., Timerkaev B. A., Toropov V. G., Faskhutdinov A. K. // High temperature. 1990. Vol. 28. P. 623.
3. Galeev I. G., Goncharov V. E., Timerkaev B. A., Toropov V. G., Fakhrutdinov I. K. // High temperature. 1992. Vol. 30 Is. 3. P. 342.
4. Ершов А. П., Сурконт О. С., Тимофеев И. Б., Шишков В. М., Черников В. А. // Теплофизика высоких температур. 2004. Т. 42. № 4. С. 516.
5. Ершов А. П., Калинин А. В., Сурконт О. С., Тимофеев И. Б., Шибков В. М., Черников В. А. // Теплофизика высоких температур. 2004. Т. 42. № 6. С. 856.
6. Gromov V. G., Levin V. A., Ershov A. P., Shibkov V. M. // High Temperature. 2006. Vol. 44. No. 2. P. 178.
7. Yokoyama T., Hamada Sh., Ibuka Sh., Yasuoka K., Ishii Sh. // Journal of Physics D: Applied Physics. 2005. Vol. 38. P. 1684.
8. Shirai N., Ibuka Sh., Ishii Sh. // IEEE transactions on plasma science. 2008. Vol. 36. No. 4. P. 960.
9. Tochikubo F., Shirai N., Uchida S. // Applied Physics Express 4. 2011. Vol. 4. No. 5. P. 056001-1-056001-3.
10. Tomita K., Urabe K., Shirai N.i, Sato Y., Hassaballa S., Bolouki N., Yoneda M., Shimizu T., Uchino K. // Japanese Journal of Applied Physics. 2016. Vol. 55.
P. 066101-1-066101-5.
11. Тимеркаев Б. А., Залялиев Б. Р. // Теплофизика высоких температур. 2014. Т. 52. № 4. С. 489.
12. Timerkaev B. A., Zalyaliev B. R. // High Temperature. 2014. Vol. 52. No. 4. P. 471.
13. Тимеркаев Б. А., Залялиев Б. Р., Каримов Б. Р., Исрафилов Д. И. // Вестник КГТУ. 2013. № 4. С. 198.
14. Timerkaev B. A., Zalyaliev B. R., Saifutdinov A. I. // Journal of Physics: Conference Series. 2014. Vol. 567. P. 012032.
15. Saifutdinov A. I., Timerkaev B. A., Zalyaliev B. R. // Journal of Physics: Conference Series. 2014. Vol. 567. P. 012031.
16. Сайфутдинов А. И., Тимеркаев Б. А. // Инженерно-физический журнал. 2012. Т. 85. № 5. С. 1104.
17. Кудрявцев А. А., Морин А. В., Цендин Л. Д. // ЖТФ. 2008. Т. 78. Вып. 8. С. 71.
18. Timerkaev B. A., Ahmetov M. M., Zalyaliev B. R., Petrova O. A., Israfilov D. I. // Journal of Physics: Conference Series. 2014. Vol. 567. P. 012036.
1. G. Y. Dautov and B. A. Timerkaev, Generators of non-equilibrium gas-discharge plasma. (Izd. Fan, 1996).
2. I. G. Galeev, V. E. Goncharov, B. A. Timerkaev, V. G. Toropov, and A. K. Faskhutdinov, High Temperature 28, 623 (1990).
3. I. G. Galeev, V. E. Goncharov, B. A. Timerkaev, V. G. Toropov, and I. K. Fakhrutdinov, High Temperature 30 (3), 342 (1992).
4. A. P. Ershov, O. S. Surkont, I. B. Timofeev, V. M. Shishkov, and V. A. Chernikov, Thermophysics of High Temperatures 42 (4), 516 (2004).
5. A. P. Ershov, A. V. Kalinin, O. S. Surkont, I. B. Timofeev, V. M. Shibkov, and V. A. Chernikov, High Temperature 42 (6), 865 (2004).
6. V. G. Gromov, V. A. Levin, A. P. Ershov, and V. M. Shibkov, High Temperature 44 (2), 178 (2006).
7. T. Yokoyama, Sh. Hamada, Sh. Ibuka, K. Yasuoka, and Sh. Ishii, Journal of Physics D: Applied Physics 38, 1684 (2005).
8. N. Shirai, Sh. Ibuka, and Sh. Ishii, IEEE Transactions on Plasma Science 36 (4), 960 (2008).
9. F. Tochikubo, N. Shirai, and S. Uchida, Applied Physics Express 4. 4 (5), 056001-1-056001-3 (2011).
10. K. Tomita, K. Urabe, N.i Shirai, Y. Sato, S. Hassaballa, N. Bolouki, M. Yoneda, T. Shimizu, and K. Uchino, Japanese Journal of Applied Physics 55, 066101-1-066101-5 (2016).
11. B. A. Timerkaev and B. R. Zalyalyev, Thermophysics of High Temperatures 52 (4), 489 (2014).
12. B. A. Timerkaev and B. R. Zalyaliev, High Temperature 52 (4), 471 (2014).
13. B. A. Timerkaev, B. R. Zalialiev, B. R. Karimov, and D. I. Israfilov, Vestnik KGTU, No. 4, 198 (2013).
14. B. A. Timerkaev, B. R. Zalyaliev, and A. I. Saifutdinov, Journal of Physics: Conference Series 567, 012032 (2014).
15. A. I. Saifutdinov, B. A. Timerkaev, and B. R. Zalyaliev, Journal of Physics: Conference Series 567, 012031 (2014).
16. A. I. Saifutdinov and B. A. Timerkaev, Journal of Engineering Physics and Thermophysics, 1-6 (2012).
17. A. A. Kudryavtsev, A. V. Morin, and L. D. Tsendin, Technical Physics 78 (8), 71 (2008).
18. B. А. Timerkaev, M. M. Akhmetov, B. R. Zalyaliev, O. A. Petrova, and D. I. Israfilov, Journal of Physics: Conference Series 567, 012036 (2014).
Выпуск
С О Д Е Р Ж А Н И Е
ФИЗИКА ПЛАЗМЫ И ПЛАЗМЕННЫЕ МЕТОДЫ
Бакшт Ф. Г., Лапшин В. Ф. Моделирование плазменного волновода на основе импульсно-периодического разряда высокого давления в цезии 5
Бурдовицин В. А., Золотухин Д. Б., Карпов К. И., Окс Е. М. О возможности оценки коэффициента вторично-электронной эмиссии металлов и ди-электриков в среднем вакууме 11
Градов В. М., Гавриш С. В., Коробков С. С., Пугачев Д. Ю. Ультрафиолетовое излучение импульсно-периодических разрядов в инертных газах 18
Пономарев А. В., Булейко А. Б., Ульянов Д. К. Подавление обратной связи в плазменном релятивистском усилителе шума с инверсной геометрией 24
Туриков В. А., Умнов А. М. Параметрическое взаимодействие мощного лазерного излучения с плазмой в сильном магнитном поле 29
Тимеркаев Б. А., Шамсутдинов Р. С., Исрафилов Д. И., Шакиров Б. Р. Тлеющий разряд в продольном сверхзвуковом потоке 34
ЭЛЕКТРОННЫЕ, ИОННЫЕ И ЛАЗЕРНЫЕ ПУЧКИ
Ризаханов Р. Н., Бармин А. А., Рудштейн Р. И. Устойчивость транспортировки электронного пучка в камере генератора электронно-пучковой плазмы 42
ФОТОЭЛЕКТРОНИКА
Гусев А. Н., Мазинов А. С., Шевченко А. И., Тютюник А. С., Гурченко В. С., Брага Е. В. Исследование гетеропереходов на основе системы фуллерена и гидразона 48
Трухачев А. В., Седнев М. В., Трухачева Н. С., Болтарь К. О., Дирочка А. И. Исследование глубины и скорости ионного травления QWIP-структур 54
Холоднов В. А., Бурлаков И. Д., Ильясов А. К. Соотношение Миллера для коэффициента умножения фотоносителей в классических лавинных гетерофотодиодах с разделенными областями поглощения и умножения 60
Пермикина Е. В. Определение толщины матриц ФЧЭ из антимонида индия по ИК-спектрам отражения 68
ФИЗИЧЕСКОЕ МАТЕРИАЛОВЕДЕНИЕ
Гибин И. С., Котляр П. Е. Динамика сверхбыстрого фотоиндуцированного фазового перехода в диоксиде ванадия 73
Гусейнов Дж. И., Джафаров Т. А., Гасанов О. М., Адгезалова Х. А. Термоэлектрические и термомагнитные свойства систем сплавов TbxSn1-xSe 82
Утамурадова Ш. Б., Далиев Х. С., Далиев Ш. Х., Файзуллаев К. М. Влияние атомов хрома и железа на процессы дефектообразования в кремнии 90
ФИЗИЧЕСКАЯ АППАРАТУРА И ЕЁ ЭЛЕМЕНТЫ
Асаёнок М. А., Зеневич А. О., Новиков Е. В. Исследование амплитудных характеристик кремниевых фотоэлектронных умножителей 96
Гриневич Б. Е., Климушкин К. Н., Ситникова Н. И., Торопов К. С. Узел отключения дискового взрывомагнитного генератора от спирального генератора 102
Рогалин В. Е., Филин С. А., Каплунов И. А. Неразрушающий контроль прозрачных материалов с помощью лазерной ИК-томографии 107
ИНФОРМАЦИЯ
Сводный перечень статей, опубликованных в журнале «Прикладная физика» в 2019 г. 113
Перечень статей, переведенных и опубликованных в англоязычных журналах в 2019 г. 119
XLVII Международная Звенигородская конференция по физике плазмы и управляемому термоядерному синтезу 124
IX научно-практическая конференция молодых ученых и специалистов «Фотосенсорика: новые материалы, технологии, приборы, производство» 126
Правила для авторов 127
C O N T E N T S
PLASMA PHYSICS AND PLASMA METHODS
F. G. Baksht and V. F. Lapshin Modeling of the plasma waveguide on the basis of the pulse-periodic high pressure caesium dis-charge 5
V. A. Burdovitsin, D. B. Zolotukhin, K. I. Karpov, and E. M. Oks On the possibility of estimating the secondary electron emission coefficient of metals and dielec-trics in medium vacuum 11
V. M. Gradov, S. V. Gavrish, S. S. Korobkov, and D. Yu. Pugachev Ultraviolet radiation of pulsed periodic discharges in inert gases 18
A. V. Ponomarev, A. B. Buleyko, and D. K. Ul’yanov Feedback suppression in the plasma relativistic microwave noise amplifier with inverse configu-ration 24
V. A. Turikov and A. M. Umnov Parametric interaction of powerful laser radiation with plasma in the strong magnetic field 29
B. A. Timerkaev, R. S. Shamsutdinov, D. I. Israfilov, and B. R. Shakirov Glow discharge in a longitudinal supersonic flow 34
ELECTRON, ION, AND LASER BEAMS
R. N. Rizakhanov, A. A. Barmin, and R. I. Rudshtein Electron beam transportation stability in the electron-beam plasma generator chamber 42
PHOTOELECTRONICS
A. N. Gusev, A. S. Mazinov, A. I. Shevchenko, A. S. Tyutyunik, V. S. Gurchenko, and E. V. Braga Research of heterojunctions based on the system of fullerene and hydrazone 48
A. V. Trukhachev, M. V. Sednev, N. S. Trukhacheva, K. O. Boltar, and A. I. Dirochka Research of depth and speed of ion-beam etching of the QWIP-structures 54
V. A. Kholodnov, I. D. Burlakov, and A. K. Ilyasov Miller’s ratio for the photocarrier multiplication coefficient in avalanche heterophotodiodes with separated absorption and multiplication regions 60
E. V. Permikina FPA thickness measurements by the IR-spectra reflection method 68
PHYSICAL SCIENCE OF MATERIALS
I. S. Gibin and P. E. Kotlyar Experimental dynamics of the super-fast photoinduction phase transition on vanadium dioxide 73
J. I. Huseynov, T. A. Jafarov, O. M. Hasanov, and Kh. A. Adgezalova Thermoelectric and thermomagnetic properties of the TbxSn1-xSe alloy systems 82
Sh. B. Utamuradova, Kh. S. Daliev, Sh. Kh. Daliev, and K. M. Fayzullaev The influence of chromium and iron atoms on the processes of defect formation in silicon 90
PHYSICAL APPARATUS AND ITS ELEMENTS
M. A. Asayonak, A. O. Zenevich, and E. V. Novikov Study of the amplitude characteristics of silicon photo-electronic multipliers 96
B. E. Grinevich, K. N. Klimushkin, N. I. Sitnikova, and K. S. Toropov Unit to disconnect a disk explosive magnetic generator from a helical generator 102
V. E. Rogalin, S. A. Filin, and I. A. Kaplunov Nondestructive testing of transparent materials using laser IR imaging 107
INFORMATION
The summary list of the articles published in Prikladnaya Fizika in 2019 113
The list of articles translated and published in English language journals in 2019 119
XLVII International Zvenigorod Conference on Plasma Physics and Controlled Thermonuclear Fusion 124
IX Theoretical and Practical Conference of Young Scientists and Specialists “Photosensorics: New Materials, Technologies, Devices, and Production” 126
Rules for authors 127
Другие статьи выпуска
Предложен метод обнаружения, наблюдения и оценки физических неоднородностей в материалах, объединяющий метод регистрации неоднородностей в показателе преломления по рассеянному ими свету и метод обнаружения неоднородностей в материалах по их поглощению и/или дополнительному тепловому излучению при нагреве лазерным излучением с использованием тепловизионного прибора ИК-диапазона. Предложена реализующая этот метод установка. Анализируется методика лазернотепловизионной неразрушающей бесконтактной дефектоскопии прозрачных материалов для контроля малоразмерных дефектов ИК-оптики и особо чистых полупроводников. Она может быть использована для выявления участков с повышенной концентрацией малоразмерных дефектов структуры материала и примесей, в том числе и так называемых кластерных образований. Причём во многих случаях возможно выявление скоплений электрически нейтральных примесей, в принципе не выявляемых традиционно применяемыми электрофизическими методами.
Рассмотрено устройство отключения дискового взрывомагнитного генератора от спирального генератора. Предложен вариант устройства, не содержащий электродетонаторов. Срабатывание устройства отключения синхронизировано с окончанием работы спирального генератора. Описаны принцип действия и конструктивные схемы устройства отключения. Представлены результаты компьютерного моделирования и экспериментов по модернизации стандартных устройств отключения.
Для регистрации оптического излучения малой интенсивности в видимой и ближней инфракрасной областях спектра при комнатных температурах нашли применение кремниевые лавинные фотоприемники с высокой чувствительностью в этих областях спектра при низких напряжениях питания и большими коэффициентами усиления.
В статье установлены зависимости вида амплитудного распределения сигналов таких фотоприемников от величины напряжения их питания.
В качестве объектов исследования использованы серийно выпускаемые кремниевые фотоэлектронные умножители Кетек РМ 3325 и ON Semi FC 30035, а также умножители из опытной партии, произведенной ОАО «Интеграл» (Республика Беларусь).
Определен диапазон напряжений, при которых амплитудные распределения выходных сигналов кремниевых фотоэлектронных умножителей имеют ярко выраженные пики. Установлено, что с увеличением напряжения питания часть пиков исчезает.
Показано, что зависимости средней амплитуды отклика от перенапряжения для кремниевых фотоэлектронных умножителей имеют линейный участок, а увеличение перенапряжения приводит к росту дисперсии амплитудного распределения импульсов.
В данной работе исследовано влияние атомов хрома и железа на процессы дефектообразования в кремнии. Установлено, что при совместном введении хрома и железа в кремний одновременно с уменьшением концентрации уровней Ес – 0,41 эВ и Ес – 0,51 эВ (для Cr) и Еv + 0,41 эВ (для Fe) наблюдается образование нового уровня в верхней половине запрещенной зоны с энергией ионизации Ес – 0,30 эВ, который, вероятно, связан с примесной парой Cr с Fe в Si. Обнаружено, что уменьшение концентраций оптически активных атомов углерода и кислорода NС опт и NО опт зависит от концентрации электрически активных атомов хрома и железа и составляет 10–25 % для кислорода, а величина NС опт почти не меняется.
Комплексными методами физико-химического анализа был изучен характер взаимодействия и природа дефектности в системе сплавов SnSe-TbSe. Определена зависимость коэффициента Холла и термоЭДС от процентного содержания тербия. Исследована температурная зависимость термоэлектрических и термомагнитных свойств систем сплавов TbxSn1-xSe.
Диоксид ванадия VO2, в котором фазовый переход осуществляется при наиболее «технологичной» температуре +67 оС, изменение удельного сопротивления составляет около пяти порядков, показатель преломления изменяется (на = 6328 Å) от 2,5 до 2,0, а время переключения рекордно малое, считается наиболее перспективным материалом современной оптоэлектроники. Рассмотрены ключевые эксперименты по исследованию динамики сверхбыстрого обратимого фазового перехода «металл–диэлектрик» в диоксиде ванадия, имеющего рекордно малое время переключения (10 фс). Это свойство диоксида ванадия может быть использовано для создания уникальных оптических затворов, которые найдут применение при исследовании быстропротекающих процессов, в разработке систем оптических телекоммуникаций, а также в различных областях оптоэлектроники и фотоники.
Рассмотрен метод определения толщин тонких матриц на основе ИК-спектров отражения. Исследована статистика распределения толщины матриц ФЧЭ из антимонида индия формата 640 512 элементов с шагом 15 мкм, утоньшенных методом химико-динамической полировки. Показана динамика улучшения технологии утоньшения МФЧЭ.
Выведено аналитическое выражение для коэффициента умножения фотоносителей в лавинных гетерофотодиодах с разделенными областями поглощения и умножения. Коэффициент умножения представлен в традиционной форме Миллера. Проанализирована зависимость этого коэффициента от приложенного напряжения смещения и параметров гетероструктуры.
В работе исследованы зависимости скорости ионно-лучевого травления верхнего контактного слоя (GaAs: Si), активной области, состоящей из пятидесятикратного чередования барьерных слоев (AlxGa1-xAs) и квантовых ям (GaAs: Si), нижнего контактного слоя (GaAs: Si) по глубине QWIP-структур на основе GaAs-AlGaAs, изготовленных методом молекулярно-лучевой эпитаксии (МЛЭ), с целью определения влияния состава различных слоев на скорость травления и возможности завершения процесса травления на необходимую глубину по времени.
Методом полива из раствора получена гетероструктура, состоящая из тонких пленок фуллерена С60 и гидразона (4-хлорбензоилгидразона 3-метил-1-фенил-4-формилпиразол-5-она). Описан синтез и методика получения гидразона. Выполнен поочередный анализ ИК-спектроскопии первичных пленок углерода и органического материала. Методом атомно-силовой микроскопии получены изображения рельефа поверхности тонкой пленки С60 на стеклянной подложке. Приведены вольтамперные характеристики однослойных тонкопленочных структур фуллерена и гидразона с контактной обвязкой ITO–алюминий. Показано, что экспериментальные структуры имеют выпрямляющие световые характеристики, тогда как темновые зависимости тока от напряжения обладают симметричным характером и меньшими значениями по току на два порядка.
Рассмотрены и проанализированы физические процессы, возникающие при транспортировке электронного потока, создаваемого импульсным генератором электроннопучковой плазмы и выводимого в плотную газовую среду посредством системы шлюзов с дифференциальной откачкой и прожигаемыми перегородками. Предложены аналитические критерии, связывающие параметры выводной системы и устанавливающие условия, при которых обеспечивается устойчивая транспортировка пучка и высокий ресурс генератора для случаев с использованием фокусирующего магнитного поля и в его отсутствие.
В работе рассмотрен процесс взаимодействия необыкновенной лазерной волны большой амплитуды с неоднородной плазмой в сильном магнитном поле в области удвоенной верхнегибридной частоты. Исследование проведено с помощью численного моделирования по методу частиц в ячейке. Показано, что в этом случае параметрический резонанс приводит к существенному нагреву электронов. Из анализа спектров продольного поля сделан вывод о том, такой нагрев обусловлен нелинейным взаимодействием верхнегибридых плазмонов, возбуждаемых лазерной волной, с электростатическими модами, подобными модам Бернштейна в линейном приближении. Исследована зависимость средней энергией электронов, набираемой в процессе нагрева, от их начальной температуры.
Впервые экспериментально получен режим усиления шумов в плазменном мазере с инверсной геометрией. Показано, что введение СВЧ-поглотителя переводит режим работы мазера из генераторного в усилительный. В обоих режимах показана перестройка частоты излучения при изменении плотности плазмы. Данная работа является этапом по реализации плазменного релятивистского усилителя шума с коротким импульсом РЭП.
Проведены численные эксперименты для исследования влияния геометрических (диаметр разрядного канала, межэлектродное расстояние), электрических (удельная электрическая мощность, средняя мощность периодически следующих импульсов) и физических параметров (давление наполнения, состав плазмообразующих сред) разрядов в ксеноне и криптоне на спектрально-энергетические характеристики импульсных источников излучения. Получен широкий набор данных по параметрам разрядов, включая температурные поля в разряде и спектральные распределения излучения. Определены условия, при которых может быть обеспечен заданный уровень пиковой силы излучения в УФ-области спектра. Указаны диапазоны частот следования импульсов и средних электрических мощностей, обеспечивающих выполнение поставленных требований по выходу УФ-излучения. Дана оценка влияния эффекта обратимой непрозрачности кварца на мощность коротковолнового излучения. Результаты расчетов подтверждены в ходе экспериментальных работ.
Предложена оригинальная методика оценки коэффициента вторичной электронной эмиссии металлических и диэлектрических мишеней в области давлений в единицы и десятки паскаль. Методика основана на измерении потенциала мишени в зависимости от тока электронного пучка и сопоставлении результатов измерений с расчетными значениями, полученными с использованием модели, основанной на уравнениях баланса заряда на мишени и баланса ионов в пучковой плазме.
Выполнено моделирование импульсно-периодического разряда высокого давления в цезии на основе уравнений радиационной газодинамики. Приведены результаты расчё- тов радиальных профилей температуры плазмы, среднемассовой скорости, потерь энергии на излучение и концентраций электронов в различные моменты времени от начала импульса тока. Показано, что исследуемый разряд позволяет создавать в горячей приосевой области практически полностью ионизованную плазму, в которой концентрация электронов возрастает от оси к стенкам трубки и имеет радиальный профиль, близкий к параболическому. Время существования плазменного волновода радиусом порядка миллиметра составляет десятки микросекунд, концентрация электронов на оси порядка 1017–1018 см-3. Обсуждаются механизмы формирования плазменного волновода в разряде.
Издательство
- Издательство
- АО "НПО "ОРИОН"
- Регион
- Россия, Москва
- Почтовый адрес
- 111538, г Москва, р-н Вешняки, ул Косинская, д 9
- Юр. адрес
- 111538, г Москва, р-н Вешняки, ул Косинская, д 9
- ФИО
- Старцев Вадим Валерьевич (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- E-mail адрес
- orion@orion-ir.ru
- Контактный телефон
- +7 (499) 3749400