Статья посвящена изготовлению и исследованию свойств фоточувствительных элементов на основе теллурида висмута. В работе методом жидкостной эксфолиации получены суспензии 2D-материала на основе теллурида висмута в органическом растворителе без использования дополнительных поверхностно-активных веществ. Размеры двумерных листов в суспензии составили в среднем 200–300 нм при толщине 2–2,5 нм. Изготовлены фоточувствительные элементы резистивного типа методом drop-casting. Исследованы фотоотклики чувствительных элементов при комнатной температуре и температуре жидкого азота.
Исследованы C-V характеристики МДП-структур, изготовленных на основе антимонида индия и диэлектрического покрытия, полученного методом анодного окисления в растворе Na2S в двухстадийном режиме. Сформированное покрытие обладает высоким качеством с низкой плотностью быстрых и медленных поверхностных состояний. Рассчитанные значения Dit и NF составили 21011 см-2 эВ-1 и 9,21010 см-2, соответственно. Изучена зависимость величины гистерезиса от напряжения. Проведение предварительного сульфидирования в растворе (NH4)2S – этиленгликоль позволило значительно уменьшить величину гистерезиса и на 25 % снизить плотность состояний на границе раздела. Значение среднеарифметической шероховатости, Ra, после анодирования увеличилось с 0,6 нм до 0,9 нм, но при этом предварительное сульфидирование не оказывает существенного влияния на данный параметр. Сформированное диэлектрическое покрытие обладает достаточной сплошностью пленки для ее применения в качестве пассивирующего покрытия фоточувствительных элементов (ФЧЭ) InSb.
Проведено сравнение двух способов утонения обратной стороны матричного модуля антимонида индия (100) с применением абразивной и безабразивной шлифовки различными аналитическими методами. Показано, что включение дополнительного этапа механической шлифовки позволяет добиться существенного улучшения геометрии матричного модуля после финишной полировки в сравнении с безабразивной обработкой. Среднеарифметическое значение шероховатости поверхности после проведения всех этапов обработки не превышает допустимых значений. С помощью построения карт обратного пространства оценена степень влияния различных способов обработки на кристаллическую структуру материала.
Разработан новый метод получения коллоидных квантовых точек селенида свинца с использованием раствора серого селена в децене-1. Исследована зависимость размера, распределения по размерам и спектральных характеристик коллоидных квантовых точек PbSe от температуры реакции. Для образцов проведена характеризация кристаллической фазы и лигандной оболочки. Из полученных образцов были получены тонкие пленки и определена их морфология. Была изучена кинетика замены исходной лигандной оболочки на роданид и йодид анионы в тонких пленках и определено время максимального замещения для исследованных систем. На основе полученных коллоидных материалов на золотых встречно-штыревых электродах была получена фото-чувствительная структура
Разработан новый прекурсор серы, полученный при растворении элементарной серы в децене-1 при повышенных температурах и давлениях. Детально исследован синтез экологически безопасных коллоидных квантовых точек CuInS2 для видимого диапазона с использованием данного прекурсора. Проведено сравнение прекурсоров индия, различ-ных температурных и концентрационных режимов синтеза. Для полученных образцов наночастиц проведена характеризация их состава и спектральных характеристик. Продемонстрирована возможность использования этого прекурсора серы для получения наночастиц AgInS2. На основе полученных материалов получены тонкие пленки и продемонстрирована принципиальная возможность создания фоточувствительных структур.
Приборы ночного видения с расширенной областью чувствительности от 0,4 мкм до 2,0 мкм имеют важнейшее значение для научных, гражданских и специальных применений. Приведены архитектура и основные характеристики матричного фотосенсора формата 640512 (шаг 15 мкм) с расширенной областью чувствительности (0,4–2,0 мкм), разработанного на основе коллоидных квантовых точек ККТ PbS. Основная часть фототока генерируется в слое ККТ n-PbS-TBAI. Этот слой изготовлен путем замены исходного лиганда (олеиновая кислота) на йод при обработке слоя ККТ иодидом тетра-н-бутиламмония (TBAI). Слой, блокирующий электроны (транспортный слой для дырок), создавался на основе p-NiOx. Слой, блокирующий дырки (транспортный слой для электронов), изготавливался на основе n-ZnO.
Приведены архитектура и основные характеристики матричного фотосенсора формата 640512 (шаг 15 мкм) с чувствительностью в области спектра 0,4–2,0 мкм, разработанного на основе коллоидных квантовых точек ККТ PbS. Слой генерации основной доли фотоносителей изготовлен на основе ККТ n-PbS путем замены исходного лиганда (олеиновая кислота) на йод при обработке слоя ККТ йодидом тетра-н-бутиламмония (TBAI). Транспортные слои для электронов и дырок изготовлены на основе n-ZnO и ККТ p-PbS EDT, где транспортный слой для дырок ККТ p-PbS-EDT создавался путем замены исходного лиганда при обработке слоя ККТ этан-1,2-дитиолом (EDT).
Описаны методы синтеза, кристаллографические параметры и строение энергетических зон двумерных и квазидвумерных материалов, таких как графен, дихалькогениды переходных металлов IV-VIII групп, бинарные 2D-халькогениды IV, III и II групп вида трихалькогениды Ti, Zr, Hf, Nb, Bi, Sb, 2D-материалы вида AVBV (AsN, AsP, PN, SbAs, SbN, SbP), 2D-нитриды вида AIIIN (A = Al, Ga, In, B), моноатомные 2D-материалы (фосфорен P, плюмбен Pb, станен Sn, германен Ge, силицен Si, антимонен Sb, арсенен As, висмутен Bi, борофен В, окто-нитроген 8-N), функциализированные графен и карбид кремния SiC, двумерные оксиды CO, SiO, GeO, SnO, диоксиды переходных металлов, германия и олова, триоксиды MoO3, WO3, ди- и тригалогениды переходных металлов.
Описаны устройство и основные параметры полевых транзисторов (FETs) на основе 2D-материалов, таких как графен (Gr) и его производные, графеновые наноленты (GNR), ди- и трихалькогениды переходных металлов MoS2, MoSe2, MoTe2, WS2, WSe2, Mo1-xWxSe2, ZrS2, ZrSe2, HfS2, HfSe2, PtS2, PtSe2, PtTe2, PdSe2, ReS2, ReSe2, HfS3, ZrS3, TiS3, TaSe3, NbS3, фосфорен (bP), антимонен (2DSb), арсенен (2DAs), сили-цен (2DSi), германен (2DGe), станен (2DSn). Рассмотрены конструкции полевых нанотранзисторов на гибких подложках, туннельных (TFET), одноэлектронных (SET), транзисторов, содержащих 2D-гетеропары Gr-(h)BN, Gr-WS2, Gr-(h)BC2N, Gr-FGr, SnS2-WS2, SnSe2-WSe2, HfS2-MoS2, PdSe2-MoS2, WSe2-WO3-x.
Описаны устройство и основные параметры фотосенсорных структур и приборов на основе квантовых точек, изготовленных методами коллоидной химии из элементов II, IV и VI групп Периодической таблицы Д.И. Менделеева. Рассмотрены гибридные структурные схемы фоторезистивных, фотодиодных и фототранзисторных элементов с поглощающими слоями на основе коллоидных квантовых точек из HgTe, HgSe, PbS, PbSe для работы в различных спектральных диапазонах, в том числе с использованием 2D-материалов.
Исследованы МДП-структуры In/Al2O3/InSb и In/SiOx/АО/InSb методами низкочастотных и высокочастотных C-V характеристик. Диэлектрические слои на поверхности пластин антимонида индия диаметром 2 формировались методами атомно-слоевого осаждения и гибридным способом, включающим анодное окисление и термическое напыление. Были построены карты распределения фиксированного заряда и величины плотности состояний на границе раздела полупроводник-диэлектрик, оценена морфология поверхности. Распределение значений Dit по площади для МДП-структуры In/Al2O3/InSb не превышало 9 %. Средние значения фиксированного заряда, NF, для МДП-структур In/Al2O3/InSb и In/SiOx/АО/InSb составили 1,41011 см-2 и 2,91011 см 2, соответственно. Использование Al2O3, нанесённого методом атомно-слоевого осаждения, может быть использовано для пассивации фотодиодных матриц на основе антимонида индия.
Описаны механизмы возникновения фотосигналов, архитектура и основные параметры фотосенсоров на основе моноатомных 2D-материалов элементов III, IV, V и VI групп главных подгрупп таблицы Менделеева, таких как графен и графеноподобные материалы, силицен, германен, черный фосфор, твердые растворы черный фосфор-мышьяк, антимонен, висмутен, теллурен, борофен и гетероструктуры, содержащие 2D-материалы, в том числе совместно с другими материалами пониженной размерности, а также фотосенсоры с использованием плазмонных наноантенн.