Рассматривается количество ближайших бент-функций к некоторым бент-функциям из класса Мэйорана - МакФарланда М2n, близкое к оценкам для него: нижней l2n = 22n+1- 2n и точной верхней £2n. Для бент-функций вида f(х,у) = ⟨х,σ(у)⟩ ⊕ φ(у) ∈ М2n где σ построена с помощью функции инверсии элементов конечного поля, подсчитано число ближайших бент-функций при тождественно нулевой φ, а также показано, что для некоторой подходящей φ количество ближайших к f меньше чем l2n + 82(2n - 1), т. е. равно l2n + о(l2n) при n → ∞. Получена формула числа бент-функций, ближайших к f(x, у) = ⟨x, у⟩ ⊕ y1y2.. .ym ∈ M2n,где 3 ≤ m ≤ n. Для m = 3 и m = n это число равно о(L2n) и 1/3L2n + о(L2n соответственно при n → ∞. Приведена полная классификация M6 по числу ближайших бент-функций.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.