В работе представлены результаты исследования современных моделей текста с целью выявления на их основе семантической близости текстов на английском языке. Задача определения семантического сходства текстов является важной составляющей многих областей обработки естественного языка: машинного перевода, поиска информации, систем вопросов и ответов, искусственного интеллекта в образовании. Авторы решали задачу классификации близости ответов учащихся к эталонному ответу учителя. Для исследования были выбраны нейросетевые языковые модели BERT и GPT, ранее применявшиеся к определению семантического сходства текстов, новая нейросетевая модель Mamba, а так же стилометрические характеристики текста. Эксперименты проводились с двумя корпусами текстов: корпус Text Similarity из открытых источников и собственный корпус, собранный с помощью филологов. Качество решения задачи оценивалось точностью, полнотой и F-мерой. Все нейросетевые языковые модели показали близкое качество F-меры около 86% для большего по размеру корпуса Text Similarity и 50-56% для собственного корпуса авторов. Совсем новым результатом оказалось успешное применение модели mamba. Однако, самым интересным достижением стало применение векторов стилометрических характеристик текста, показавшее 80% F-меры для авторского корпуса и одинаковое с нейросетевыми моделями качество решения задачи для другого корпуса.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.