Комплексирование нескольких моделей в одну систему технического зрения позволит решать более сложные и комплексные задачи. В частности, для мобильной робототехники и беспилотных летательных аппаратов (БЛА) является актуальной проблемой отсутствие наборов данных для различных условий. В работе в качестве решения данной проблемы предлагается комплексирование нескольких моделей: сегментации, сопровождения и классификации. Это позволит значительно повысить качество решения сложных задач без дополнительного обучения. Модель сегментации позволяет выделять произвольные объекты из кадров, поэтому ее можно использовать в недетерминированных и динамических средах. Модель классификации позволяет определить необходимые для навигации объекты, которые затем сопровождаются с помощью третей модели. В работе подробно описан алгоритм комплексирования моделей. Ключевым элементом в алгоритме является коррекция предсказаний моделей, позволяющая достаточно надежно сегментировать и сопровождать различные объекты. Процедура коррекции предсказаний моделей решает следующие задачи: добавление новых объектов для сопровождения, валидация сегментированных масок объектов и уточнение сопровождаемых масок. Универсальность данного решения подтверждается работой в сложных условиях, на которых не обучали модели, например, подводная съемка или изображения с БЛА. Проведено экспериментальное исследование каждой из моделей в условиях открытой местности и в помещении. Наборы данных включали сцены актуальные для мобильной робототехники. В частности, в сценах присутствовали движущиеся объекты (человек, автомобиль) и возможные преграды на пути робота. Для большинства классов метрики качества сегментации превышали 80%. Основные ошибки связаны с размерами объектов. Проведенные эксперименты наглядно демонстрируют универсальность данного решения без дополнительного обучения моделей. Дополнительно проведено исследование быстродействия на персональном компьютере с различными входными параметрами и разрешением. Увеличение количества моделей значительно повышает вычислительную нагрузку и не достигает реального времени. Поэтому одним из направления дальнейших исследований является повышение быстродействия системы.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.