В данной работе разбирается применение алгоритмов машинного обучения для прогнозирования мощности рассеивания энергии за счет переключений компонентов схем на начальном этапе физического проектирования интегральных схем (ИС) для конкретной архитектуры. Реалистичная оценка потребляемой мощности возможна на заключительных этапах маршрута проектирования ИС, что может создать дополнительную итеративность в маршруте для оптимизации энергопотребления. Предложенный метод позволяет довольно точно спрогнозировать конечное значение рассматриваемого вида энергопотребления с высокой точностью для различных типов стандартных ячеек при различных сценариях и конфигурациях планировки. Недостатком метода является необходимость прохождения полного маршрута проектирования выбранной схемы с выбранным диапазоном параметров для сбора данных, нужных для обучения моделей машинного обучения, что требует дополнительных машинных и временных ресурсов.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.