Предлагается матричная реализация метода коллокации для построения решения интегральных уравнений Вольтерра второго рода с применением систем ортогональных полиномов Чебышева первого рода и полиномов Лежандра. Подынтегральная функция в рассматриваемых уравнениях представляется в виде частичной суммы ряда по этим многочленам. В качестве точек коллокаций выбираются корни полиномов Чебышева и Лежандра. С использованием матричных и интегральных преобразований, свойств конечных сумм произведений этих полиномов и весовых функций в нулях соответствующих многочленов со степенью, равной числу узлов, интегральные уравнения приводятся к системам линейных алгебраических уравнений относительно неизвестных значений искомых функций в этих точках. В результате решения интегральных уравнений Вольтерра второго рода находятся путем полиномиальных интерполяций полученных значений функций в точках коллокаций с использованием обратных матриц, элементы которых записываются на основе ортогональных соотношений для этих полиномов. Элементы интегральных матриц также приводятся в явном виде. Получены оценки погрешностей построенных решений по бесконечной норме. Представлены результаты проведенных вычислительных экспериментов, которые демонстрируют эффективность использованного метода коллокации.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.