В статье проанализирована эффективность использования различных моделей машинного обучения для предсказания спектральных свойств экзогенных флуорофоров, ключевых в диагностике онкозаболеваний. Исследуется применение алгоритмов ИИ для быстрого и экономически эффективного поиска новых флуорофоров, способствующих раннему выявлению рака. В статье оценивается эффективность различных моделей машинного обучения в предсказании свойств экзогенных флуорофоров, используемых в диагностике онкологических заболеваний. В работе исследуется применение алгоритмов искусственного интеллекта для быстрого поиска новых флуорофоров, способствующих раннему обнаружению рака. Особое внимание уделено оптической биопсии как неинвазивному методу исследования тканей для ранней диагностики патологий. В статье обобщаются данные из базы данных PubChem и GeoMcNamara и анализируются молекулярные свойства флуорофоров и их спектральные характеристики. Используя модели машинного обучения, такие как линейная регрессия, метод опорных векторов, случайный лес и XGBoost, получены результаты предсказания длины волны излучения для образцов флуорофоров. Результаты обучения и тестирования моделей свидетельствуют о высокой точности работы XGBoost и Random Forest. Исследование подчеркивает важность разработки эффективных флуорофоров для ранней диагностики рака и представляет модели машинного обучения в качестве инструментов для обработки и анализа данных в этой области, что позволяет акцентировать внимание на перспективности и применимости прогрессивных методов исследования в онкологии и медицинской химии.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.