Читать онлайн

In this paper, we consider a nonlinear impulsive parabolic type partial differential equation with nonlinear impulsive conditions. Dirichlet type boundary value conditions with respect to spatial variable is used, and eigenvalues and eigenfunctions of the spectral problem are founded. The Fourier method of the separation of variables is applied. A countable system of nonlinear functional equations is obtained with respect to the Fourier coefficients of the unknown function. A theorem on a unique solvability of the countable system of nonlinear functional equations is proved by the method of successive approximations. A criteria of uniqueness and existence of a solution for the nonlinear impulsive mixed problem is obtained. A solution of the mixed problem is derived in the form of the Fourier series. The absolute and uniform convergence of the Fourier series is proved.

Ключевые фразы: mixed problem, nonlinear parabolic equation, nonlinear impulsive conditions, involution, UNIQUE SOLVABILITY
Автор (ы): Юлдашев Турсун Камалдинович
Соавтор (ы): Файзиев Азиз Кудратиллаевич, Rakhmonov F. D.
Журнал: ЧЕЛЯБИНСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЖУРНАЛ

Предпросмотр статьи

Идентификаторы и классификаторы

УДК
517.956.4. Параболические уравнения и системы
Для цитирования:
ЮЛДАШЕВ Т. К., ФАЙЗИЕВ А. К., RAKHMONOV F. D. MIXED PROBLEMFOR A NONLINEAR IMPULSIVE DIFFERENTIAL EQUATION OF PARABOLIC TYPE // ЧЕЛЯБИНСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЖУРНАЛ. 2024. Т. 9 № 1
Текстовый фрагмент статьи