Показано, что разогрев вулканического материала, взятого на вулкане Этна (Италия), апокампическим разрядом уменьшает напряжение, при котором от канала разряда стартует положительный стример - апокамп, и увеличивает скорость его распространения. По спектрам люминесценции видно, что эти процессы сопровождаются эмиссией легкоионизуемых K и Na, что согласуется с данными об элементном составе образцов Этны. На основе полученной информации предложена гипотеза о том, что в местах повышенной вулканической активности на высотах 10-18 км (на уровне тропосферы) вероятность появления голубых струй и стартеров повышается.
Идентификаторы и классификаторы
Транзиентные световые явления (в англ. научной литературе transient luminous events), или транзиенты, - различные крупномасштабные светящиеся структуры, наблюдаемые в условиях повышенной электрической активности, характерной для гроз, штормов и ураганов в средней и верхней атмосфере Земли. К транзиентам средней атмосферы относят голубые струи, стартеры и красные спрайты. Голубые струи представляют собой «фонтаны» голубого и/или синего свечения, бьющего вверх с вершины грозового облака. Они возникают на средних высотах 12-18 км, достигают высот 40-45 км, распространяются в вертикальном направлении со скоростью 100-150 км/с и существуют 60-400 мс.
Список литературы
1. Mishin E.V. Milikh G.M. Blue jets: Upward lightning // Space Sci. Rev. 2008. V. 137, N 4. P. 473-488. EDN: MMXMAF
2. Siingh D., Singh R.P., Kumar S., Dharmaraj T., Singh A.K., Patil M.N., Singh Sh. Lightning and middle atmospheric discharges in the atmosphere // J. Atmos. Sol.-Terr. Phys. 2015. V. 134, N 11. P. 78-101. EDN: VEKGKN
3. Донченко В.А., Кабанов М.В., Кауль Б.В., Нагорский П.М., Самохвалов И.В. Электрооптические явления в атмосфере: учебное пособие. Томск: Изд-во НТЛ, 2015. 316 с. EDN: NYGCPF
4. Бекряев В.И. Молнии, спрайты и джеты. СПб.: Изд-во РГГМУ, 2009. 96 с. EDN: QKISLB
5. Pancheshnyi S., Nudnova M., Starikovskii A. Development of a cathode-directed streamer discharge in air at different pressures: Experiment and comparison with direct numerical simulation // Phys. Rev. E. 2005. V. 71, N 1. P. 016407. EDN: LJAVSZ
6. Стриковский А.В., Евтушенко А.А., Гущин М.Е., Коробков С.В., Костров А.В. Импульсный высоковольтный разряд в воздухе с градиентом давления // Физика плазмы. 2017. Т. 43, № 10. С. 866-873. EDN: ZFSGFZ
7. Opaits D.F. Shneider M.N., Howard P.J., Miles R.B., Milikh G.M. Study of streamers in gradient density air: Table top modeling of red sprites // Geophys. Res. Lett. 2010. V. 37, N 14. L14801. EDN: MXZBMV
8. Sosnin E.A., Naidis G.V., Tarasenko V.S., Skakun V.S., Panarin V.A., Babaeva N.A., Baksht E.Kh., Kuznetsov V.S. Apokamps produced by repetitive discharges in air // Phys. Plasm. 2018. V. 25, N 8. P. 083513. EDN: VBGXOQ
9. Sosnin E.A., Panarin V.A., Skakun V.S., Baksht E.Kh., Tarasenko V.F. Dynamics of apokamp-type atmospheric pressure plasma jets // Eur. Phys. J. D. 2017. V. 71, N 2. P. 25. EDN: YVBWPV
10. Соснин Э.А., Найдис Г.В., Тарасенко В.Ф., Скакун В.С., Панарин В.А., Бабаева Н.Ю. О физической природе апокампического разряда // ЖЭТФ. 2017. Т. 152, № 5. C. 1081-1087. EDN: ZRXNMJ
11. Соснин Э.А., Панарин А.А., Скакун В.С., Тарасенко В.Ф. Моделирование голубых струй и спрайтов с помощью апокампа, формируемого при пониженных давлениях воздуха // Оптика атмосф. и океана. 2016. Т. 29, № 10. C. 855-858. EDN: WMNVPL
12. Соснин Э.А., Найдис Г.В., Тарасенко В.Ф., Бабаева Н.Ю., Панарин В.А., Скакун В.С. Соотношение интенсивностей полос 2P и 1P молекулярного азота в условиях апокампического разряда при различных давлениях воздуха // Оптика атмосф. и океана. 2018. Т. 31, № 10. С. 794-797. EDN: VJVOTT
13. Соснин Э.А., Бакшт Е.Х., Кузнецов В.С., Панарин В.А., Скакун В.С., Тарасенко В.Ф. Лабораторное моделирование голубых струй с помощью апокампического разряда в герцовом диапазоне частот // Оптика атмосф. и океана. 2019. Т. 32, № 7. С. 585-590. EDN: IVRRPX
14. Соснин Э.А., Панарин В.А., Скакун В.С., Тарасенко В.Ф., Козырев А.В., Кожевников В.Ю., Ситников А.Г., Коковин А.О., Кузнецов В.С. Апокампический разряд: условия образования и механизмы формирования // Изв. вузов. Физика. 2019. Т. 62, № 7. С. 182-189. EDN: MDIUQV
15. Панарин В.А., Скакун В.С., Соснин Э.А., Тарасенко В.Ф. Лабораторная демонстрация в воздухе красных и голубых диффузных мини-струй // Оптика атмосф. и океана. 2017. Т. 30, № 3. C. 243-252. EDN: XXKXGJ
16. Kozlov K., Wagner H., Brandenburg R., Michel P.J. Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure // J. Phys. D. 2001. V. 34, № 21. P. 3164-3176. EDN: LGZLSD
17. Tanguy J.C. Contributions to mineralogy and petrology tholeiitic basalt magmatism of Mount Etna and its relations with the alkaline series // Contrib. Mineral. Petrol. 1978. V. 66, № 1. P. 51-67.
18. Horwell C.J., Sargent P., Andronic D., Lo Castro M.D., Tomatis M., Hillman S.E., Michnowicz S.A.K., Fubini B. The iron-catalysed surface reactivity and health-pertinent physical characteristics of explosive volcanic ash from Mt. Etna, Italy // J. Appl. Volcanology. 2017. V. 6, № 1. 16 p.
19. Newhall C.A., Self S. The volcanic explosiviry index (VEI): An estimate of the explosive magnitude for historical volcanism // J. Geophys. Res. 1982. V. 87, iss. C2. P. 1231-1238.
20. Руководство по облакам вулканического пепла, радиоактивных материалов и токсических химических веществ. Doc. 9691 AN/954. Изд. 2. Международная организация гражданской авиации, 2007. 202 с.
21. Chanrion O., Neubert T., Mogensen A., Yair Y., Stendel M., Singh R., Siingh D. Profuse activity of blue electrical discharges at the tops of thunderstorms // Geophys. Res. Lett. 2017. V. 44, N 1. P. 496-503. EDN: YWDCYT
22. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph / eds. J.J. Mahoney, M.F. Coffin. Washington, D.C.: American Geophysical Union, 1997. 438 p.
23. Manual on Volcanic Ash, Radioactive Material and Toxic Chemical Clouds. Doc 9691 AN/954. Internftional Civil Aviation Organization, 2007. 162 p.
24. Akiko Goto A., Horie T., Ohba T., Fujimaki H. XRF analysis of major and trace elements for wide compositional ranges from silicate rocks to carbonate rocks using low dilution glass beads // Japan. Magaz. Mineralog. Petrolog. Sci. 2008. V. 31, N 3. P. 162-173.
25. Chen A.B., Kuo Ch.-L., Lee Y.-J., Su H.-T., Hsu R.-R., Chern J.-L., Frey H.U., Mende S.B., Takahashi Y., Fukunishi H., Chang Y.-Sh., Liu T.-Y., Lee L.-Ch. Global distributions and occurrence rates of transient luminous events // J. Geophys. Res. 2008. V. 113, N A08. P. A08306.
Выпуск
Другие статьи выпуска
Рассмотрены химические свойства пенталена и его изомеров, а также их катионов. Пентален и его производные играют важную роль в процессах образования и разрушения полиароматических углеводородов - основных компонентов микрочастиц сажи, образующихся в процессе сгорания органического топлива. Также обсуждается явление изменения ароматических/антиароматических свойств пенталена и двух его основных изомеров при ионизации (изменении количества p-электронов).
На основе численного моделирования в программном комплексе ANSYS разработана конструкция мономорфного (униморфного) деформируемого зеркала. Выбрана структура управляющих электродов, обеспечивающая на световой апертуре отработку аберраций до 5-го порядка включительно (первые 21 полином Цернике) с высокой точностью воспроизведения. Приведены расчеты основных характеристик мономорфного зеркала: функции влияния электродов, погрешность отработки заданных аберраций, прогиб зеркала под действием собственного веса, термодеформации поверхности зеркала вследствие изменения температуры окружающей среды, термодеформации и температурное поле от падающего лазерного излучения, собственные частоты колебаний зеркала. Результаты свидетельствуют о возможности использования зеркала для эффективной работы в составе адаптивной оптической системы.
В работе представлены экспериментальная установка, эксперименты по измерению и расчет светового давления на конструкционные материалы для разных углов падения света. Расчет необходим для определения светотехнических свойств материала и суммарного момента сил солнечного давления. В качестве конструкционного материала использовался промышленный металлотрикотаж - сетеполотно. Для расчета было проведено более 4000 экспериментальных измерений коэффициентов пропускания и коэффициентов отражения сетеполотна.
Представлены результаты лидарного зондирования тропосферного аэрозоля, выполненного в Калининграде (54° с. ш., 20° в. д.) с применением двухволнового атмосферного лидара (532 и 1064 нм), который позволяет проводить зондирование аэрозоля до высот 10-12 км. В результате измерений мощности рассеянного в тропосфере лидарного сигнала с 2011 по 2018 г. установлены особенности вертикальной структуры и динамики аэрозоля. Анализ результатов показал усиление волновой активности в диапазоне акустико-гравитационных волн в тропосфере во время прохождения солнечного терминатора.
Представлены результаты лабораторных экспериментов по регистрации сигналов обратнорассеянного излучения ИК-лазера от аэрозольных частиц, содержащих органические примеси. Исследования выполнены на лабораторном стенде по схеме лидарного зондирования на контролируемой оптической трассе. В качестве модельных сред использовались водный аэрозоль и водные растворы, содержащие органические примеси: триптофан, изопропиловый спирт, глицерин, никотинамидадениндинуклеотид. Результаты измерений сигналов обратного рассеяния для различных органических примесей в исследуемых аэрозольных частицах показывают возможность использования ИК-лазеров со сканированием частоты излучения для дистанционного зондирования атмосферного органического аэрозоля.
Представлены результаты разработки комплекса для проведения высокоскоростной визуально-оптической диагностики процессов плазмохимического синтеза в смесях порошков, инициируемых СВЧ-излучением гиротрона. Комплекс предусматривает получение не только изображений процессов в реакторе, но и спектра возникающего излучения. Комплекс включает в себя видеокамеры, спектрометры, систему синхронизации и предполагает возможность установки системы активной фильтрации на основе активных сред на парах металлов. Также приведены результаты визуализации процесса синтеза различных керамических микро- и наночастиц. Показано, что использование временной фильтрации оптических изображений не позволяет полностью подавить влияние фонового излучения.
Рассмотрены условия формирования ТГц-излучения в монокристаллах ZnGeP2 при генерации разностной частоты. Показано, что для реализации эффективного ТГц-излучения требуются источники двухчастотной лазерной накачки с длительностью импульсов генерации ~ 1 нс. Предлагается использовать в качестве такого источника ИК-излучение (на переходах Sr I в области 3 мкм и Sr II - 1 мкм) системы «задающий генератор - усилитель» на парах стронция. Рассмотрены условия формирования инверсии населенности, при которых в активной среде лазера на парах стронция реализуется длительность импульсов генерации ~ 1 нс. Показано, что при использовании такой системы можно увеличить среднюю мощность генерации лазера на парах стронция пропорционально увеличению объема активной среды усилителя.
Впервые при накачке азота импульсным индукционным разрядом получена энергия генерации 10 мДж с импульсной мощностью свыше 1 МВт. Длительность импульсов генерации на полувысоте созданного индукционного азотного лазера составляла (8,5 ± 0,5) нс. Лазерная генерация была получена на двух длинах волн - 337,1 и 357,7 нм. Пучок генерации в поперечном сечении имел форму кольца диаметром ~ 33 мм и шириной ~ 2 мм.
В работе представлены результаты разработки активного элемента на переходах атома натрия с продольной и поперечной накачкой. Экспериментально исследована возможность получения излучения на резонансных переходах при возбуждении активной среды с помощью импульсов наносекундной длительности различной энергии и спектрального состава. Накачка среды осуществлялась с помощью лазера на красителях и CuBr-лазера. Зафиксировано излучение на D -линиях натрия при накачке желтой линией излучения CuBr-лазера.
При возбуждении электронным пучком парогазовой смеси Ne + Tl и создании инверсии населенностей на переходах иона таллия Tl+ в реакциях перезарядки получена и исследована лазерная генерация на линиях Tl+ с λ = 1922; 1385,2; 595,1; 695 и 707 нм (на первых двух линиях - впервые). В исследуемом диапазоне параметров накачки получена линейная зависимость мощности генерации от мощности накачки, свидетельствующая об эффективности электронно-пучкового возбуждения. Достигнута средняя мощность излучения 44 мВт на λ = 595 нм при частоте 1 кГц с эффективностью ~ 0,06%. Проведено численное моделирование энергетических характеристик лазера.
В работе описан созданный ИК-лазер с накачкой импульсным индукционным цилиндрическим разрядом, генерирующий в области 900-2050 нм на переходах атомов Xe I. В качестве активной среды использовался ксенон и его смеси с гелием и аргоном. Проведены экспериментальные исследования влияния состава активной газовой среды на интенсивность излучения атомов Xe I. Спектр генерации состоял из трех линий с длинами волн 904,5; 1733 и 2026 нм. Соотношение интенсивностей сильно зависело от состава активной среды. Длительность оптических импульсов излучения достигала (8 ± 1) нс на полувысоте.
Представлены результаты экспериментальных исследований влияния условий накачки на спектральные и временные характеристики излучения ИК Ar I-лазера при возбуждении активной среды импульсным индукционным продольным разрядом. Получена лазерная генерация на переходах нейтральных атомов аргона на длинах волн 1213, 1240, 1270, 1694, 1791 нм в чистом аргоне и в его двухкомпонентных смесях с гелием и неоном. Длительность оптических импульсов на полувысоте составляла (5 ± 1) нс. Энергия излучения достигала 0,1 мДж.
C 15 по 20 сентября 2019 г. в Институте оптики атмосферы им. В. Е. Зуева СО РАН (г. Томск) прошла XIV Международная конференция по импульсным лазерам и применениям лазеров AMPL-2019. Число участников форума было гораздо больше, чем во все предыдущие годы. Тематика традиционно отражала результаты исследований последних лет: фундаментальные вопросы лазерной физики, физические и химические процессы в активных средах лазеров, новые лазеры и лазерные системы, применения лазеров, создание приборов на основе лазерных источников, новые оптические технологии, проблемы коммерциализации лазеров и приборов на их основе.
Издательство
- Издательство
- СО РАН
- Регион
- Россия, Новосибирск
- Почтовый адрес
- 630090, Новосибирская обл, г Новосибирск, Советский р-н, пр-кт Академика Лаврентьева, д 17
- Юр. адрес
- 630090, Новосибирская обл, г Новосибирск, Советский р-н, пр-кт Академика Лаврентьева, д 17
- ФИО
- Пармон Валентин Николаевич (ПРЕДСЕДАТЕЛЬ СО РАН)
- E-mail адрес
- sbras@sb-ras.ru
- Контактный телефон
- +7 (495) 9381848