В работе представлены результаты разработки активного элемента на переходах атома натрия с продольной и поперечной накачкой. Экспериментально исследована возможность получения излучения на резонансных переходах при возбуждении активной среды с помощью импульсов наносекундной длительности различной энергии и спектрального состава. Накачка среды осуществлялась с помощью лазера на красителях и CuBr-лазера. Зафиксировано излучение на D -линиях натрия при накачке желтой линией излучения CuBr-лазера.
Идентификаторы и классификаторы
- УДК
- 535. Оптика
Лазеры на парах металлов позволяют решать довольно широкий круг задач. Для определения температуры в верхних слоях атмосферы можно использовать лидарные технологии, позволяющие исследовать спектральные характеристики излучения паров щелочных металлов на высотах > 100 км [1], что предполагает возбуждение уровней D1 и D2. Существуют задачи коррекции систем с адаптивной оптикой, решаемые с помощью искусственных звезд [2, 3]. Одной из перспективных задач, для решения которых могут быть использованы активные среды на парах металлов, является скоростная визуализация с активной спектральной фильтрацией. Возможности систем визуализации с усилителями яркости на самоограниченных переходах в парах металлов продемонстрированы в ряде работ (например, [4]). Достаточно перспективной может стать разработка активных оптических систем на основе сред на парах щелочных металлов, которые имеют высокую эффективность преобразования оптического излучения.
Список литературы
1. Alpers M., Eixmann R., Fricke-Begemann C., Gerding M., Höffner J. Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and rotational Raman scattering // Atmos. Chem. Phys. 2004. V. 4, iss. 3. P. 793-800. EDN: MBOUQB
2. Шалагин А.М. Мощные лазеры на парах щелочных металлов с диодной накачкой // Успехи физ. наук. 2011. Т. 181, № 8. С. 1011-1016. EDN: RMFJUC
3. Богачев А.В., Гаранин С.Г., Дудов А.М., Ерошенко В.А., Куликов С.М., Микаелян Г.Т., Панарин В.А., Паутов В.О., Рус А.В., Сухарев С.А. Лазер на парах цезия с диодной накачкой и прокачкой лазерной среды по замкнутому циклу // Квант. электрон. 2012. Т. 42, № 2. С. 95-98. EDN: TTFMPJ
4. Тригуб М.В., Платонов В.В., Федоров К.В., Евтушенко Г.С., Осипов В.В. CuBr-лазер в задачах визуализации процессов получения наноматериалов // Оптика атмосф. и океана. 2016. Т. 29, № 3. С. 249-253. EDN: VOOCDZ
5. Krupke W.F. Diode pumped alkali lasers (DPALs) - A review (rev 1) // Prog. Quantum. Electron. 2012. V. 36, N 1. P. 4-28. EDN: PMVDOJ
6. Gaoa F., Chena F., Xiea J.J., Li D.J., Zhanga L.M., Yanga G.L, Guoa J., Guoa L.H. Review on diode-pumped alkali vapor laser // Optik. 2013. V. 124, iss. 20. P. 4353-4358. EDN: RIKNDN
7. Pitz G.A., Anderson M.D. Recent advances in optically pumped alkali lasers // Appl. Phys. Rev. URL: https:// oi.org/10.1063/1.5006913 (last access: 26.11.2019). DOI: 10.1063/1.5006913(last
8. Атутов С.Н., Плеханов А.И., Шалагин А.М. Сверхсветимость на резонансном переходе атомов Na при оптическом возбуждении // Опт. и спектроскоп. 1984. Т. 56, № 2. С. 215-222. EDN: DIOSXH
9. Konefal Z., Ignaciuk M. Stimulated collision induced processes in sodium vapor in the presence of helium // Appl. Phys. B. 1990. V. 51. P. 285-291.
10. Konefal Z., Ignaciuk M. Stimulated processes in sodium vapour in the presence of molecular buffer gas systems // Opt. Quantum Electron. 1993. V. 28. P. 169-180.
11. Hager G.D., Perram G.P. A three-level analytic model for alkali metal vapor laser: Part I. Narrowband optical pumping // Appl. Phys. B. 2010. V. 101, N 1. P. 45-56. EDN: TMRPYZ
12. Марков Р.В., Плеханов А.И., Шалагин А.М. Инверсия заселенностей на переходах в основное состояние атомов при нерезонансном поглощении лазерного излучения // ЖЭТФ. 2001. Т. 120, № 5. С. 1185-1193.
13. Марков Р.В., Пархоменко А.И., Плеханов А.И., Шалагин А.М. Генерация на резонансном переходе атомов натрия при нерезонансном оптическом возбуждении // ЖЭТФ. 2009. Т. 136, № 2. С. 211-233. EDN: NIUHUL
14. Hu Shu, Gai Bao-Dong, Cao Zhan-Li, Guo Jing-Wei, Wang Fan. Experimental and theoretical evaluation of the absorption coefficients of excimer pairs of sodium with noble gases and alkanes // Acta Phys.-Chim. Sin. 2016. V. 32, N 4. P. 848-854. EDN: YCKEVM
15. Mironov A.E., Goldshlag W., Eden J.G. Alkali D2 line laser optically pumped by two color free-free absorption // Proc. SPIE. 2016. V. 9729. P. 972906.
16. Readle J.D., Wagner C.J., Verdeyen J.T., Spinka T.M., Carroll D.L., Eden J.G. Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers // Proc. SPIE. 2010. V. 7581. P. 75810.
17. Yanfei Lü, Xihe Zhang, Shutao Li, Jing Xia, Weibo Cheng, Zheng Xiong. All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal // Opt. Lett. 2010. V. 35, N 17. P. 2964. EDN: MYXAIH
18. Taylor L., Feng Y., Bonaccini D.C. High power narrowband 589 nm frequency doubled fibre laser source // Opt. Express. 2009. V. 17, N 17. P. 14687-14693. EDN: NAAOOX
19. Kuryak A.N., Sokovikov V.G., Troitskii V.O. Investigation of resonance radiation of natrium vapor excited by CuBr-laser // Abstracts of the IX Int. Conf. “Atomic and Molecular Pulsed Lasers”. Tomsk: IAO SB RAS, 2009. P. 130.
20. Канорский С.И., Каслин В.М., Якушев О.Ф. Na2-лазер с оптической накачкой // Квант. электрон. 1980. Т. 7, № 10. С. 2201-2203.
21. Тригуб М.В., Евтушенко Г.С., Троицкий В.О. Исследование усилительных характеристик CuBr-лазера // Оптика атмосф. и океана. 2016. Т. 29, № 2. С. 162-164. EDN: VKZFUD
22. Petukhov T.D., Evtushenko G.S., Tel’minov E.N. Amplification of spontaneous emission on sodium D-lines using nonresonance broadband optical pumping // Proc. SPIE. 2018. V. 10614. P. 1061403. EDN: VBTBWA
23. Петухов Т.Д., Евтушенко Г.С., Тельминов Е.Н. Усиленное спонтанное излучение на D-линиях натрия при нерезонансной оптической накачке // Оптика атмосф. и океана. 2017. Т. 30, № 10. С. 888-892. EDN: ZMWGZT
Выпуск
Другие статьи выпуска
Рассмотрены химические свойства пенталена и его изомеров, а также их катионов. Пентален и его производные играют важную роль в процессах образования и разрушения полиароматических углеводородов - основных компонентов микрочастиц сажи, образующихся в процессе сгорания органического топлива. Также обсуждается явление изменения ароматических/антиароматических свойств пенталена и двух его основных изомеров при ионизации (изменении количества p-электронов).
Показано, что разогрев вулканического материала, взятого на вулкане Этна (Италия), апокампическим разрядом уменьшает напряжение, при котором от канала разряда стартует положительный стример - апокамп, и увеличивает скорость его распространения. По спектрам люминесценции видно, что эти процессы сопровождаются эмиссией легкоионизуемых K и Na, что согласуется с данными об элементном составе образцов Этны. На основе полученной информации предложена гипотеза о том, что в местах повышенной вулканической активности на высотах 10-18 км (на уровне тропосферы) вероятность появления голубых струй и стартеров повышается.
На основе численного моделирования в программном комплексе ANSYS разработана конструкция мономорфного (униморфного) деформируемого зеркала. Выбрана структура управляющих электродов, обеспечивающая на световой апертуре отработку аберраций до 5-го порядка включительно (первые 21 полином Цернике) с высокой точностью воспроизведения. Приведены расчеты основных характеристик мономорфного зеркала: функции влияния электродов, погрешность отработки заданных аберраций, прогиб зеркала под действием собственного веса, термодеформации поверхности зеркала вследствие изменения температуры окружающей среды, термодеформации и температурное поле от падающего лазерного излучения, собственные частоты колебаний зеркала. Результаты свидетельствуют о возможности использования зеркала для эффективной работы в составе адаптивной оптической системы.
В работе представлены экспериментальная установка, эксперименты по измерению и расчет светового давления на конструкционные материалы для разных углов падения света. Расчет необходим для определения светотехнических свойств материала и суммарного момента сил солнечного давления. В качестве конструкционного материала использовался промышленный металлотрикотаж - сетеполотно. Для расчета было проведено более 4000 экспериментальных измерений коэффициентов пропускания и коэффициентов отражения сетеполотна.
Представлены результаты лидарного зондирования тропосферного аэрозоля, выполненного в Калининграде (54° с. ш., 20° в. д.) с применением двухволнового атмосферного лидара (532 и 1064 нм), который позволяет проводить зондирование аэрозоля до высот 10-12 км. В результате измерений мощности рассеянного в тропосфере лидарного сигнала с 2011 по 2018 г. установлены особенности вертикальной структуры и динамики аэрозоля. Анализ результатов показал усиление волновой активности в диапазоне акустико-гравитационных волн в тропосфере во время прохождения солнечного терминатора.
Представлены результаты лабораторных экспериментов по регистрации сигналов обратнорассеянного излучения ИК-лазера от аэрозольных частиц, содержащих органические примеси. Исследования выполнены на лабораторном стенде по схеме лидарного зондирования на контролируемой оптической трассе. В качестве модельных сред использовались водный аэрозоль и водные растворы, содержащие органические примеси: триптофан, изопропиловый спирт, глицерин, никотинамидадениндинуклеотид. Результаты измерений сигналов обратного рассеяния для различных органических примесей в исследуемых аэрозольных частицах показывают возможность использования ИК-лазеров со сканированием частоты излучения для дистанционного зондирования атмосферного органического аэрозоля.
Представлены результаты разработки комплекса для проведения высокоскоростной визуально-оптической диагностики процессов плазмохимического синтеза в смесях порошков, инициируемых СВЧ-излучением гиротрона. Комплекс предусматривает получение не только изображений процессов в реакторе, но и спектра возникающего излучения. Комплекс включает в себя видеокамеры, спектрометры, систему синхронизации и предполагает возможность установки системы активной фильтрации на основе активных сред на парах металлов. Также приведены результаты визуализации процесса синтеза различных керамических микро- и наночастиц. Показано, что использование временной фильтрации оптических изображений не позволяет полностью подавить влияние фонового излучения.
Рассмотрены условия формирования ТГц-излучения в монокристаллах ZnGeP2 при генерации разностной частоты. Показано, что для реализации эффективного ТГц-излучения требуются источники двухчастотной лазерной накачки с длительностью импульсов генерации ~ 1 нс. Предлагается использовать в качестве такого источника ИК-излучение (на переходах Sr I в области 3 мкм и Sr II - 1 мкм) системы «задающий генератор - усилитель» на парах стронция. Рассмотрены условия формирования инверсии населенности, при которых в активной среде лазера на парах стронция реализуется длительность импульсов генерации ~ 1 нс. Показано, что при использовании такой системы можно увеличить среднюю мощность генерации лазера на парах стронция пропорционально увеличению объема активной среды усилителя.
Впервые при накачке азота импульсным индукционным разрядом получена энергия генерации 10 мДж с импульсной мощностью свыше 1 МВт. Длительность импульсов генерации на полувысоте созданного индукционного азотного лазера составляла (8,5 ± 0,5) нс. Лазерная генерация была получена на двух длинах волн - 337,1 и 357,7 нм. Пучок генерации в поперечном сечении имел форму кольца диаметром ~ 33 мм и шириной ~ 2 мм.
При возбуждении электронным пучком парогазовой смеси Ne + Tl и создании инверсии населенностей на переходах иона таллия Tl+ в реакциях перезарядки получена и исследована лазерная генерация на линиях Tl+ с λ = 1922; 1385,2; 595,1; 695 и 707 нм (на первых двух линиях - впервые). В исследуемом диапазоне параметров накачки получена линейная зависимость мощности генерации от мощности накачки, свидетельствующая об эффективности электронно-пучкового возбуждения. Достигнута средняя мощность излучения 44 мВт на λ = 595 нм при частоте 1 кГц с эффективностью ~ 0,06%. Проведено численное моделирование энергетических характеристик лазера.
В работе описан созданный ИК-лазер с накачкой импульсным индукционным цилиндрическим разрядом, генерирующий в области 900-2050 нм на переходах атомов Xe I. В качестве активной среды использовался ксенон и его смеси с гелием и аргоном. Проведены экспериментальные исследования влияния состава активной газовой среды на интенсивность излучения атомов Xe I. Спектр генерации состоял из трех линий с длинами волн 904,5; 1733 и 2026 нм. Соотношение интенсивностей сильно зависело от состава активной среды. Длительность оптических импульсов излучения достигала (8 ± 1) нс на полувысоте.
Представлены результаты экспериментальных исследований влияния условий накачки на спектральные и временные характеристики излучения ИК Ar I-лазера при возбуждении активной среды импульсным индукционным продольным разрядом. Получена лазерная генерация на переходах нейтральных атомов аргона на длинах волн 1213, 1240, 1270, 1694, 1791 нм в чистом аргоне и в его двухкомпонентных смесях с гелием и неоном. Длительность оптических импульсов на полувысоте составляла (5 ± 1) нс. Энергия излучения достигала 0,1 мДж.
C 15 по 20 сентября 2019 г. в Институте оптики атмосферы им. В. Е. Зуева СО РАН (г. Томск) прошла XIV Международная конференция по импульсным лазерам и применениям лазеров AMPL-2019. Число участников форума было гораздо больше, чем во все предыдущие годы. Тематика традиционно отражала результаты исследований последних лет: фундаментальные вопросы лазерной физики, физические и химические процессы в активных средах лазеров, новые лазеры и лазерные системы, применения лазеров, создание приборов на основе лазерных источников, новые оптические технологии, проблемы коммерциализации лазеров и приборов на их основе.
Издательство
- Издательство
- СО РАН
- Регион
- Россия, Новосибирск
- Почтовый адрес
- 630090, Новосибирская обл, г Новосибирск, Советский р-н, пр-кт Академика Лаврентьева, д 17
- Юр. адрес
- 630090, Новосибирская обл, г Новосибирск, Советский р-н, пр-кт Академика Лаврентьева, д 17
- ФИО
- Пармон Валентин Николаевич (ПРЕДСЕДАТЕЛЬ СО РАН)
- E-mail адрес
- sbras@sb-ras.ru
- Контактный телефон
- +7 (495) 9381848