Архив статей журнала
В настоящее время обнаружение аномалий в длинных временных рядах возникает в широком спектре предметных областей: цифровая индустрия, здравоохранение, моделирование климата, финансовая аналитика и др. Диссонанс формализует понятие аномалии и определяется как подпоследовательность ряда, которая имеет расстояние до своего ближайшего соседа, не превышающее наперед заданного аналитиком порога. Ближайшим соседом подпоследовательности является та подпоследовательность ряда, которая не пересекается с данной и имеет минимальное расстояние до нее. В статье представлен новый алгоритм поиска диссонансов временн´ого ряда на вычислительном кластере, каждый узел которого оснащен графическим процессором. Алгоритм применяет параллелизм по данным: временн´ой ряд разбивается на непересекающиеся фрагменты, обрабатываемые графическими процессорами узлов вычислительного кластера. С помощью ранее разработанного авторами параллельного алгоритма на каждом узле выполняется отбор локальных кандидатов в диссонансы. Далее с помощью обменов на каждом узле формируется множество глобальных кандидатов как объединение всех локальных кандидатов. Затем каждый узел выполняет глобальную очистку, удаляя из множества глобальных кандидатов ложноположительные диссонансы. Глобальная очистка распараллеливается на основе блочного умножения матрицы кандидатов и матрицы подпоследовательностей фрагмента. Результирующее множество диссонансов формируется как пересечение множеств, полученных узлами по итогу глобальной очистки. Вычислительные эксперименты с синтетическими и реальными временными рядами, проведенные на платформе суперкомпьютеров Ломоносов-2 и Лобачевский, оснащенных 48-64 графическими процессорами, показывают высокую масштабируемость разработанного алгоритма.
Поиск типичных подпоследовательностей временного ряда является одной из актуальных задач интеллектуального анализа временных рядов. Данная задача предполагает нахождение набора подпоследовательностей временного ряда, которые адекватно отражают течение процесса или явления, задаваемого этим рядом. Поиск типичных подпоследовательностей дает возможность резюмировать и визуализировать большие временные ряды в широком спектре приложений: мониторинг технического состояния сложных машин и механизмов, интеллектуальное управление системами жизнеобеспечения, мониторинг показателей функциональной диагностики организма человека и др. Предложенная недавно концепция сниппета формализует типичную подпоследовательность временного ряда следующим образом. Сниппет представляет собой подпоследовательность, на которую похожи многие другие подпоследовательности данного ряда в смысле специализированной меры схожести, основанной на евклидовом расстоянии. Поиск типичных подпоследовательностей с помощью сниппетов показывает адекватные результаты для временных рядов из широкого спектра предметных областей, однако соответствующий алгоритм имеет высокую вычислительную сложность. В настоящей работе предложен новый параллельный алгоритм поиска сниппетов во временном ряде на графическом ускорителе. Распараллеливание выполнено с помощью технологии программирования CUDA. Разработаны структуры данных, позволяющие эффективно распараллелить вычисления на графическом процессоре. Представлены результаты вычислительных экспериментов, подтверждающих высокую производительность разработанного алгоритма.
Проводится численное моделирование обтекания гиперзвукового летательного аппарата с использованием модели высокотемпературного воздуха и гибридной архитектуры на основе высокопроизводительных графических процессорных устройств. Расчеты проводятся на основе уравнений Эйлера, для дискретизации которых применяется метод конечных объемов на неструктурированных сетках. Приводятся результаты исследования эффективности расчета гиперзвуковых течений газа на графических процессорах. Обсуждается время счета, достигнутое при использовании моделей совершенного и реального газа.