Представлены результаты экспериментальных исследований электрических и спектрально-энергетических характеристик импульсных газоразрядных источников УФ-излучения с плазменными каналами диаметрами 3, 5, 7 мм. Предложена оригинальная методика изучения влияния плотности тока на яркостную температуру при фиксированном разрядном токе. Показана перспективность использования капиллярного плазменного канала для получения максимальной эффективности излучения в спектральном диапазоне 200–300 нм с удельным энерговкладом разряда в 2,8–16,5 Дж/м3. Предложенная конструкция лампы и схема электрического питания позволили достичь яркостной температуры 16,6 кК в спектральном диапазоне 200–300 нм и довести КПД УФ-излучения в диапазоне 200–300 нм до 33 % от всей излученной плазменным каналом энергии.
В работе последовательно рассмотрены предпосылки создания импульсных цезий–ртуть– ксеноновых ИК-источников с двумя сапфировыми оболочками. При этом теоретически выявлены факторы, определяющие параметры излучения газоразрядной лампы, сформирована математическая модель и выполнен расчет температурных, плазменных и радиационных характеристик разряда, а также выполнен комплекс экспериментальных, конструкторских и технологических исследований. Полученные результаты расчетных и экспериментальных исследований позволили впервые создать новое поколение отечественных импульсных газоразрядных источников ИК-излучения с разрядом смеси паров цезия, ртути и ксенона, ограниченным системой из двух сапфировых оболочек.
Исследование изменения структуры поликристаллического ниобия, после облучения ионами ксенона с энергиями 80, 140, 300 кэВ проводили рентгеновскими методами в излучении Сu (K). Обнаружено, что кубическая ОЦК-структура ниобия сохраняется, дополнительные сверхструктурные рентгеновские линии, нехарактерные для структуры ниобия, отсутствуют. Облучение ионами ксенона приводит к изменению химического состава ниобия, уменьшению параметров элементарной ячейки, увеличению отражательной интенсивности рентгеновских линий основной структуры ниобия, увеличению макронапряжений в решетке ниобия. Рентгеновским методом определена концентрация ионов ксенона, растворенных по глубине образца, в зависимости от энергии облучения. Приведена структурная модель растворения ионов ксенона в решетке ниобия, которая объясняет образование металлической связи ксенона с атомами ниобия. Связь между атомами ниобия и ксенона возникает при торможении ионов по глубине образца, что приводит к образованию твердого раствора замещения на основе ниобия и дефектов, возникающих при смещении атомов ниобия в тетраэдрические пустоты. Определены изменения радиуса ксенона в твердом растворе замещения на основе ниобия в зависимости от энергии ионов облучения. Приведена математическая модель, которая объясняет увеличение отражательной рентгеновской интенсивности линий твердого раствора замещения на основе ниобия с различными концентрациями ксенона. Обнаружен переход рентгеновского -излучения в - излучение.
Приведена конструкция импульсного газоразрядного источника УФ-излучения с двумя оболочками, в котором сапфировая трубка размещена в разрядной части кварцевой лампы с фольговыми токовводами. Такое конструктивное решение позволяет повысить устойчивость разрядной оболочки к термическому воздействию импульсного дугового разряда. Проведены исследования электротехнических и радиационных параметров импульсной лампы в разрядном контуре с емкостью 40 мкФ и напряжением заряда конденсатора 2,42 кВ. Максимум плотности тока достигается за 31 мкс и составляет 10 кА/см2. Импульсная электрическая мощность в лампе составила 2,8 МВт, что позволило достичь яркостной температуры 11 кК в спектральном диапазоне 237–267 нм. Измеренная энергия излучения в диапазоне 200–300 нм составляет 26 % от всей излученной энергии.
В работе выполнены экспериментальные исследования тепловых полей в газоразрядных лампах, позволившие расчетным путем определить конструктивные характеристики ксеноновой лампы сверхвысокого давления с сапфировой оболочкой. Предложенная конструкция газоразрядной лампы обладает бóльшей надежностью, соответствует по световым параметрам источнику излучения с шаровой кварцевой оболочкой, но по габаритным размерам меньше аналога в два раза.
Данная работа посвящена теоретическому анализу теплофизических процессов в импульсном ксеноновом разряде при добавлении в состав плазмообразующей среды другого инертного газа. На основе разработанной математической модели рассчитаны температурные зависимости теплопроводности смесей ксенона с неоном, криптоном и аргоном в различных процентных соотношениях. Показано влияние теплопроводности смеси газов на температуру, оптическое пропускание и кристаллизацию кварцевой оболочки газоразрядной лампы.
Представлены результаты исследования импульсного короткодугового неограниченного ксенонового разряда высокого давления в качестве источника УФ-излучения. Выполнен теоретический анализ возможности повышения эффективности излучения ксенонового разряда в УФ области спектра, описана конструкция трех-
электродной газоразрядной лампы, изучены электрические, яркостные и спектральные характеристики разрабатываемого источника.