В данной статье рассматриваются современные методы обучения с подкреплением, с акцентом на их применение в динамичных и сложных средах. Исследование начинается с анализа основных подходов к обучению с подкреплением, таких как динамическое программирование, методы Монте-Карло, методы временной разницы и градиенты политики. Особое внимание уделяется методологии Generalized Adversarial Imitation Learning (GAIL) и ее влиянию на оптимизацию стратегий агентов. Приведено исследование безмодельного обучения и выделены критерии выбора агентов, способных работать в непрерывных пространствах действий и состояний. Экспериментальная часть посвящена анализу обучения агентов с использованием различных типов сенсоров, включая визуальные, и демонстрирует их способность адаптироваться к условиям среды, несмотря на ограничения разрешения. Представлено сравнение результатов на основе кумулятивной награды и длины эпизода, выявляющее улучшение производительности агентов на поздних этапах обучения. Исследование подтверждает, что использование имитационного обучения значительно повышает эффективность агента, сокращая временные затраты и улучшая стратегии принятия решений. Настоящая работа открывает перспективы для дальнейшего изучения механизмов улучшения разрешающей способности сенсоров и тонкой настройки гиперпараметров.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.