Архив статей журнала

ТОЧНЫЕ РЕШЕНИЯ УРАВНЕНИЙ НАВЬЕ – СТОКСА ОДНОНАПРАВЛЕННЫХ ТЕЧЕНИЙ МИКРОПОЛЯРНЫХ ЖИДКОСТЕЙ В ПОЛЕ МАССОВЫХ СИЛ (2024)
Выпуск: № 3 (2024)
Авторы: Бурмашева Н. В., Просвиряков Евгений

В статье представлено семейство точных решений системы уравнений Навье – Стокса, используемой для описания неоднородных однонаправленных течений вязкой жидкости с учетом моментных напряжений. Несмотря на наличие только одной ненулевой компоненты вектора скорости, эта самая компонента зависит от времени и двух пространственных координат. Зависимость от третьей пространственной координаты отсутствует ввиду уравнения несжимаемости, являющегося частным случаем закона сохранения массы. Получающаяся переопределенная система уравнений рассматривается в нестационарной постановке. По-строение семейства точных решений полученной переопределенной системы начинается с анализа однородного решения типа Куэтта как наиболее простого в этом классе. Далее структура решения постепенно усложняется: профиль единственной ненулевой компоненты вектора скорости представлен в виде полинома, зависящего от одной переменной (горизонтальной координаты). Коэффициенты полинома функционально зависят от второй (верти-кальной) координаты и времени. Показано, что, ввиду сильной нелинейности и неоднородности исследуемого уравнения, сумма отдельных его решений не является решением. Также показано, что в линейно независимом базисе степенных функций горизонтальной координаты, определяющих вышеупомянутый полином, рассматриваемое уравнение распадается на цепочку простейших однородных и неоднородных уравнений в частных производных пара-болического типа. Данные уравнения интегрируются последовательно, порядок интегрирования отдельно описан. Результаты, изложенные в данной статье, обобщают ранее представ-ленное авторами семейство точных решений для описания однонаправленных нестационарных течений.

Сохранить в закладках
ТОЧНЫЕ РЕШЕНИЯ ДЛЯ УРАВНЕНИЙ ОБЕРБЕКА – БУССИНЕСКА ДЛЯ КОНВЕКТИВНЫХ ТЕЧЕНИЙ СТОКСА (2024)
Выпуск: № 2 (2024)
Авторы: Горулева Л. С., Обабков И. И., Просвиряков Евгений

При изучении конвективных крупномасштабных течений (движение жидкости в тон-ком слое) можно для первоначальных исследований рассматривать приближение Стокса при интегрировании уравнения Обербека – Буссинеска. В этом случае конвективную производную в уравнениях переноса импульса и в уравнении теплопроводности полагают тождественно равной нулю. В статье рассмотрено несколько подходов к построению точных решений для медленных (ползущих) течений неоднородно нагретой жидкости. Для установившихся течений приведены формулы для трехмерных течений в классе Линя – Сидорова – Аристова. Гидродинамические поля описываются полиномами. Приведены точные решения для поля скоростей, нелинейно зависящего от двух пространственных координат (продольных, или горизонтальных) с коэффициентами нелинейных форм, зависящими от третьей ко-ординаты. Показано, как можно автоматизировать вычисления неизвестных коэффициентов для формирования гидродинамических полей (скоростей и температуры).

Сохранить в закладках