Статья: СИСТЕМА НЕЙРОСЕТЕВОЙ ДИАГНОСТИКИ МОРФОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК РЕНТГЕНОВСКИХ СНИМКОВ ЛЕГКИХ: РЕАЛИЗАЦИЯ НА ПЛАТФОРМЕ MATLAB

В работе представлен результат апробации и расширения функционала нейронной сверточной глубокоуровневой сети для решения задач классификации рентгеновских снимков при диагностике заболеваний легких человека. Основным компонентом системы интеллектуальной диагностики является предварительно обученная сеть ResNet50, реализованная в среде Matlab. Дополнительное обучение сети проводилось с использованием сформированного банка данных цифровых снимков человеческих легких, полученных с помощью флюорографического аппарата, и рентгеновских снимков, размещенных в открытом источнике. В целях повышения качества детектирования реализована процедура предпроцессорной обработки цифровых изображений. Применяемые алгоритмы обучения позволили добиться общей точности распознавания в 96% для диагностических случаев: COVID-19 затенения областей легкого, вирусной пневмонии и здоровых снимков легких.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Лицензия
Доступ
Всем
Просмотров
3

Предпросмотр документа

Информация о статье

ISSN
1814-2400
Журнал
ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ
Год публикации
2024
Автор(ы)
Салмиянов В. О., Синагатулин А. А., Масловская А. Г.