Статья: Использование модуля сверточного внимания для интерпретации результатов работы сиамской нейронной сети при идентификации рукописных подписей

В настоящей работе рассматривается возможность применения сиамской сверточной нейронной сети (SNN) с интегрированным модулем сверточного внимания (CBAM) в идентификационных исследованиях рукописных подписей. Одним из факторов, тормозящих процесс внедрения искусственных нейронных сетей в процесс производства судебно-экспертных исследований, является их низкая степень интерпретируемости. Из-за этого исследователю сложно определить, какие именно закономерности были выявлены нейросетевым алгоритмом и какие из них легли в основу полученного прогноза. Кроме того, в большинстве современных работ, посвященных анализу почерка, специалисты используют «классический» подход к определению авторства рукописи, при котором эта задача рассматривается как частный случай классификации. Однако данный способ часто приводит к ошибкам II рода, из-за чего, на взгляд авторов, использование классификационных алгоритмов для решения идентификационных задач неприемлемо. Вместо этого авторы предлагают обратить внимание на архитектуру SNN. Для подтверждения этих тезисов в рамках настоящей работы были проведены эксперименты, в ходе которых удалось установить, что современные механизмы внимания, в частности модуль CBAM, способны частично интерпретировать полученные нейросетью результаты. Применение SNN, в свою очередь, позволяет минимизировать число ошибок II рода по сравнению с «классической» классификационной системой.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Загрузил(а)
Лицензия
Доступ
Всем
Просмотров
4

Предпросмотр документа

Информация о статье