Статья: ЭФФЕКТИВНЫЕ КВАНТОВЫЕ АЛГОРИТМЫ ДЛЯ КВАНТОВОГО ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Текущие исследования по разработке передовых квантовых алгоритмов нацелены на создание набора алгоритмических примитивов, которые могут быть использованы в качестве модулей для различных промышленных рабочих процессов. Цель статьи заключается в рассмотрении различных квантовых алгоритмов для оптимального квантового управления. В работе использовались методы систематического обзора литературы, контент-анализа. Всесторонний поиск осуществлялся в соответствии с рекомендациями PRISMA и проводился в базах Scopus, Web of Science и Google Scholar за период с 2022 по 2025 г. Литература для такого обзора отбиралась в базах данных на основании количества цитирований публикаций, импакт-фактора, индекса Хирша журналов. В практической части исследования использовались методы численного оптимального управления и обучения с подкреплением. В статье представлен обзор исследований современных авторов в области ослабления эффектов шума и декогеренции, анализа ошибок квантовых алгоритмов, а также методов оценки и снижения суммарной погрешности. В процессе исследования в качестве перспективного алгоритма для квантового оптимального управления прорабатываются тепловые ансамбли с целью аппроксимации следа унитарной матрицы. Проводится аналитическая связь между алгоритмом Ахаронова для получения полинома Джонса. Отдельно рассмотрены трехпрядевые косы и их унитарные представления, а также представления на основе тепловых ансамблей. Показана методика измерения математического ожидания фазово-чувствительного оператора обнаружения ансамбля. Доказано преимущество приведенного алгоритма для квантового оптимального управления. Рассмотрен вариационный квантовый алгоритм и его особенности. В работе получены результаты сравнительного анализа наиболее распространенных квантовых алгоритмов оптимального управления. Обозначены пути их усовершенствования с указанием характерных особенностей для каждой модели. Также отмечено, что перспективным направлением дальнейших изысканий является изучение возможностей пересечения областей квантовой механики и машинного обучения, что может привести к созданию новых подходов к управлению квантовыми системами, улучшению существующих алгоритмов.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Загрузил(а)
Лицензия
Доступ
Всем
Просмотров
1

Предпросмотр документа

Информация о статье

ISSN
1812-7320
Журнал
СОВРЕМЕННЫЕ НАУКОЕМКИЕ ТЕХНОЛОГИИ
Год публикации
2025
Автор(ы)
Тырышкин С. Ю.