Статья: Интеллектуальная система мониторинга и адаптации маршрута беспилотных летательных аппаратов на основе нейросетевого анализа объектов риска

Исследуется интеллектуальная система мониторинга и адаптации маршрута беспилотных летательных аппаратов (БПЛА) на основе нейросетевого анализа объектов риска. Рассматриваются алгоритмы автономной навигации, обеспечивающие анализ внешней среды и оперативную корректировку траектории полёта с учётом потенциальных угроз. Оцениваются возможности применения машинного зрения, нейросетевых алгоритмов, методов предобработки данных, детектирования объектов, семантической сегментации, алгоритмов траекторного планирования, предиктивного управления и адаптивной оптимизации маршрутов для идентификации препятствий, движущихся объектов и зон ограничения полётов. Анализируется роль интеллектуальных систем управления в архитектуре БПЛА, их влияние на повышение автономности, устойчивости и эффективности выполнения задач в динамически изменяющихся условиях. Предлагаемые решения ориентированы на снижение рисков, связанных с нештатными ситуациями, за счёт внедрения адаптивных стратегий управления полётом. Применяются методы системного анализа, компьютерного зрения и машинного обучения, включая свёрточные нейросети, алгоритмы предобработки изображений, фильтрации и сегментации данных, а также анализ сенсорных показателей. Оценка эффективности реализована посредством моделирования траекторий движения, тестирования алгоритмов идентификации угроз и анализа параметров устойчивости маршрутов БПЛА. Научная новизна заключается в разработке интегрированной системы интеллектуальной корректировки маршрута БПЛА, основанной на применении нейросетевых методов классификации объектов и адаптивных алгоритмов планирования траекторий. Разработаны механизмы предиктивного анализа рисков, обеспечивающие автоматическую корректировку маршрута при обнаружении препятствий, неблагоприятных погодных условий и зон ограниченного доступа. Предложенная архитектура управления сочетает технологии машинного зрения, анализа потоков данных и автоматизированного принятия решений, а также использует методы динамической маршрутизации, алгоритмы корректировки полёта в реальном времени и стратегии предотвращения столкновений. Такой подход обеспечивает повышение уровня автономности работы дронов. Разработанные алгоритмы интеллектуальной навигации могут быть внедрены в современные системы автономного управления БПЛА, обеспечивая адаптацию к динамическим условиям и повышение эффективности выполнения задач в различных сферах, включая оборонные и промышленные применения.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Загрузил(а)
Лицензия
Доступ
Всем
Просмотров
3

Предпросмотр документа

Информация о статье

ISSN
2305-6061
EISSN
2454-0714
Журнал
ПРОГРАММНЫЕ СИСТЕМЫ И ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ
Год публикации
2025
Автор(ы)
Сергеев Д. А., Родионов Д. Г., Поляков П., Голиков Г. И., Старченкова О. Д., Дмитриев Н., Конников Е. А.