Статья: Поперечнослойное разделение искусственных нейронных сетей для классификации изображений
В статье рассматриваются задачи модульного обучения искусственных нейронных сетей, а также исследуются возможности частичного использования модулей в условиях ограниченных вычислительных ресурсов. Предлагаемый метод основывается на свойствах
вейвлет-преобразования по разделению информации на высокочастотную и низкочастотную части. Используя наработки по вейвлет-преобразованию на основе сверточного слоя, авторы осуществляют поперечнослойное разделение сети на модули для дальнейшего частичного использования их на устройствах с малой вычислительной мощностью. Теоретическое обоснование такого подхода в статье подкрепляется экспериментальным разделением базы MNIST на 2 и 4 модуля и их последовательным использованием с замером точности и производительности. Выигрыш в производительности составил 2 и более раза при использовании отдельных модулей. Также с помощью AlexNet-подобной сети с использованием набора данных GTSRB проверены предложенные теоретические положения, при этом выигрыш производительности одного модуля составил 33 % без потери точности.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 5
Информация о статье
- ISSN
- 0134-2452
- EISSN
- 2412-6179
- Префикс DOI
- 10.18287/2412-6179-CO-1278.
- Журнал
- КОМПЬЮТЕРНАЯ ОПТИКА
- Год публикации
- 2024