Статья: О ПОДСТАНОВКАХ, СОВЕРШЕННО РАССЕИВАЮЩИХ КЛАССЫ РАЗБИЕНИЙ ВЕКТОРНОГО ПРОСТРАНСТВА VLN(2M)
Рассматриваются разбиения Wn,l подмножества Vn(2m) декартова произведения V1 (2m) векторного пространства Vn(2m) полем F2m, состоящего из всех l-грамм с попарно различными координатами, l,n,m ∈ N,l,n ≥2. Такие разбиения обобщают «классические» разностные разбиения при l = 2 и встречаются в методах криптоанализа, использующих линейности, высшие, усечённые, невозможные и кратные разности. На Vn(2m) задано покоординатное действие группы S(Vn(2m)) на l-граммах. Описываются свойства подстановок, максимально удалённых относительно метрики Хемминга от группы, сохраняющей разбиения W декартово произведения Vn(2m). Данные подстановки названы совершенно рассеивающими разбиение W. Указана связь между подстановками, совершенно рассеивающими разбиения Wn,l, APN-подстановками, АВ-подстановками и 2r- разностно-равномерными подстановками, r ≥ 1. Сравниваются свойства рассеивания разбиений W(n,3) известными классами подстановок S-боксов.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 5
Информация о статье
- ISSN
- 2226-308X
- EISSN
- 2411-2313
- Журнал
- ПРИКЛАДНАЯ ДИСКРЕТНАЯ МАТЕМАТИКА. ПРИЛОЖЕНИЕ
- Год публикации
- 2024