Статья: О ЗАБЛУЖДЕНИЯХ В СОВРЕМЕННОЙ ЛОГИКЕ

В статье обсуждается несостоятельность трёх «бесспорных» положений в современной логике: о противоречивости понятия «множество»; о безусловной необходимости аксиом в логике; о безошибочности силлогистики. Первое заблуждение преодолевается предложением использовать в основаниях логики алгебру множеств в том варианте, который изложен в книге Р. Куранта и Г. Роббинса «Что такое математика?». Второе заблуждение преодолевается с помощью вывода известных законов алгебры множеств, которые соответствуют законам классической логики, методом перебора вариантов. Третье заблуждение преодолевается построением математической модели полисиллогистики, в основе которой лежат законы алгебры множеств. Новизна предложенной модели рассуждений заключается в том, что в неё помимо посылок вводятся ограничения, нарушение которых свидетельствует о некорректности рассуждения. Данная модель позволяет расширить аналитические возможности логического анализа и выявлять некорректности традиционной силлогистики, к которым, в частности, относится признание «неправильными» модусами некоторых правильных рассуждений. Формулируются и обосновываются новые законы алгебры множеств: закон парадокса, условие непустого пересечения и закон существования.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Загрузил(а)
Лицензия
Доступ
Всем
Просмотров
8

Информация о статье

ISSN
2223-9537
EISSN
2313-1039
Префикс DOI
10.18287/2223-9537-2025-15-1-11-23
Журнал
ОНТОЛОГИЯ ПРОЕКТИРОВАНИЯ
Год публикации
2025
Автор(ы)
Кулик Б. А.