В статье представлены способы применения фрактальной геометрии при исследовании речной системы Волги. Дан обзор алгоритмов вычисления фрактальной размерности и приведены примеры расчетов, а также описаны пути трактовки и применения полученных результатов.
Идентификаторы и классификаторы
С давних времен человечество изучало лишь идеальные фигуры: окружности, параллелограммы, треугольники, которых нет в реальном мире, но которые относительно просто описываются. Знакомая всем школьная геометрия не способна описать облака, потому что это не просто сферы, горы, которые лишь очень приближенно похожи на конусы, а о причудливых формах береговой линии и вообще говорить не приходится, тут уж и представить нельзя, чем их можно аппроксимировать. Окружающий нас мир гораздо сложнее, не все можно заменить на что-то просто устроенное. Существует множество вещей, обладающих замысловатыми формами и свойствами, описывать которые нужно соответствующими объектами. И тут нам помогут фракталы.
Список литературы
1. Фракталы в науках о Земле / А. Н. Насонов, И. В. Цветков, И. М. Жогин [и др.]. - Воронеж: Типография ООО “Ковчег”, 2018. - 82 с. EDN: YPHMBN
2. Качарава А.С. Живая математика: практическое применение фракталов в жизни / А.С. Качарава. // Старт в науке: интернет-портал. - URL: https://school-science.ru/7/7/38898 (дата обращения: 20.03.2024).
3. Христолюбова А. Фракталы в нашей жизни / А. Христолюбова // Алые паруса: проект для одаренных детей. - Дата публикации: 07.04.2015. - URL: https://nsportal.ru/ap/library/drugoe/2015/04/07/issledovatelskaya-rabota-fraktaly-v-nashey-zhizni (дата обращения: 21.03.2024).
4. Элементы большой науки - популярный сайт / фонд развития теоретической физики и математики “Базис”. - “Элементы”, 2005-2024. - URL: https://elementy.ru (дата обращения: 15.03.2024).
5. Investigations of Human EEG Response to Viewing Fractal Patterns / C. M. Hägerhäll, T.Laike, R. Taylor [et al.]. // Perception. - Vol. 37(10). - P. 1488-94. -. URL: https://www.researchgate.net/publication/23641221_Investigations_of_Human_EEG_Response_to_Viewing_Fractal_Patterns.
6. Балханов В. К. Основы фрактальной геометрии и фрактального исчисления/ В. К. Балханов; Ин-т физического материаловедения СО РАН. - Улан-Удэ: Изд-во Бурятского госуниверситета, 2013. - 224 с.
7. Соболь, С. В. Фрактальные параметры водных объектов / С. В. Соболь; Нижегородский государственный архитектурно-строительный университет. - Нижний Новгород: Нижегородский государственный архитектурно-строительный университет, 2019. - 232 с. EDN: HCQTGL
Выпуск
Другие статьи выпуска
В статье рассматриваются методы прогнозирования сложности учебных курсов на основе логистической регрессии с использованием оценок по обеспечивающим дисциплинам. Основной объект исследования - курс «Программирование на Python», для которого ключевыми обеспечивающими дисциплинами выбраны математика, информатика и английский язык. Целью исследования является разработка модели, позволяющей адаптировать учебные задания к индивидуальным потребностям студентов, повышая эффективность образовательного процесса. Для реализации модели использованы синтетические данные, что обусловлено ограничениями доступа к реальным образовательным данным. Применение методов машинного обучения, в частности логистической регрессии, позволяет получить не только классификацию курсов по сложности (легкий, средний, сложный), но и вероятностные оценки, отражающие степень уверенности модели в своих предсказаниях. Авторы рассматривают весовые коэффициенты признаков, что позволяет понять вклад каждой обеспечивающей дисциплины в прогнозирование сложности. Прогнозирование сложности курсов и заданий способствует более точному подбору учебных материалов, что улучшает качество образования и способствует развитию персонализированных образовательных траекторий. Таким образом, статья вносит вклад в развитие методов образовательной аналитики и подчеркивает необходимость перехода от прогнозирования успеваемости студентов к прогнозированию сложности курсов, что открывает новые перспективы для персонализации образовательного процесса и повышения его эффективности.
Обсуждается развитие новых видов интеллектуальной когнитивной робототехники с учетом возрастающих потребностей применения роботизированных социотехнических систем в промышленных / непромышленных сферах (особенно для применения в катастрофических ситуациях типа техногенных аварий или коронавирус) и развития квантовых сквозных ИТ. Промышленная революция «Индустрия 4.0» и третья квантовая революция «Квантовая программная инженерия» предопределили развитие нового направления - интеллектуальное когнитивное управление роботизированными социотехническими системами как основы проекта «Индустрия 5.0». Одной из основных проблем стала необходимость исследования взаимодействия человека-оператора с роботом и перераспределения зон ответственности между роботами в коллективе (толпе - swarm) роботов, человеком - оператором и роботом, а также выявления предельных возможностей допустимой работоспособности (Affordance / Kansei / Kawaii Engineering) роботов в различных проблемно-ориентированных областях. Проведен анализ развития моделей роботизированных социотехнических систем и построения образовательных процессов с нестандартной логикой подготовки ИТ-специалистов нового поколения в условиях стремительного разрыва между образовательными процессами и требованиями к базовым знаний в области квантовых сквозных ИТ. Представлена методология, разработанная в ЛИТ им. М. Г. Мещерякова ОИЯИ, по подготовки ИТ-специалистов нового поколения для управления физическими экспериментами, квантового интеллектуального управления физическими установками в мегасайнс проектах типа NICA, роботов - беспилотников радиационного контроля окружающей среды и др.
Работа посвящена решению задачи сегментации текстовых изображений, целью которой является выделение на изображении документа текстовых блоков, соответствующих колонкам, заголовкам, колонтитулам и т. д. Проводится обзор существующих методов сегментации изображений, в том числе предназначенных и для поиска и выделения на изображениях текстовых блоков. Анализируются как классические методы, так и методы, основанные на использовании искусственных нейронных сетей. Для решения поставленной задачи предлагается подход на основе свёрточных нейронных сетей и модели U-Net. Описывается метод автоматической генерации обучающих примеров для обучения нейронной сети. Рассматривается процессы настройки модели, её обучения и тестирования. Приводятся результаты численного исследования обученных моделей на реальных данных.
В работе проведен анализ текстов описаний товарных позиций ТН ВЭД для обуви, определены признаки, влияющие на классификацию. Предложена систематизация признаков, доступных для визуального распознавания и формализации из документации. Приведены возможности использования методов искусственного интеллекта для решения задач классификации, приведен опыт построения экспертной системы.
Семантическая сегментация - операция в компьютерном зрении, заключающаяся в классификации и попиксельной локализации объектов на цифровом изображении. Данная статья содержит в себе обзор существующих модификаций классической архитектуры сверточной нейронной сети, направленных на решение проблемы искажения информации с исходного изображения. Проведено сравнение эффективности рассмотренных моделей в условиях бинарной и множественной семантической сегментации. Статья может быть полезной для ML/DL-разработчиков, желающих изучить проблематику сегментации изображений в рамках своей предметной области.
Автоматическая идентификация и классификация нейронов в микропрепаратах нервной ткани имеет важное значение при изучении воздействия ионизирующего излучения на головной мозг. Оценка состояния клеток ЦНС специалистом вручную является трудоемким и субъективным процессом, в то время как алгоритмы машинного обучения показали потенциал в автоматизации этой задачи. В данной работе были использованы 81 фотоизображение препаратов гиппокампа мышей, на которых выделяли клетки без видимых повреждений, легко-измененные и дистрофические. Для каждой клетки вычислялись следующие параметры: Площадь, Округлость и Структурная сложность ядра. Данные параметры использовались для обучения классификатора RandomForestClassifier с использованием библиотеки scikit learn. Точность классификации составила 68%, при этом наиболее значимым признаком оказалась структурная сложность ядра. Предложенный классификатор может служить основой для автоматической системы анализа нейронов в микропрепаратах головного мозга.
Издательство
- Издательство
- ДУБНА
- Регион
- Россия, Дубна
- Почтовый адрес
- 141980 г.Дубна Московской обл., ул.Университетская, 19
- Юр. адрес
- 141980 г.Дубна Московской обл., ул.Университетская, 19
- ФИО
- Деникин Андрей Сергеевич (ИСПОЛНЯЮЩИЙ ОБЯЗАННОСТИ РЕКТОРА)
- E-mail адрес
- rector@uni-dubna.ru
- Контактный телефон
- +8 (496) 2166001